首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   47篇
  2022年   3篇
  2021年   11篇
  2020年   8篇
  2019年   17篇
  2018年   9篇
  2017年   7篇
  2016年   17篇
  2015年   21篇
  2014年   25篇
  2013年   30篇
  2012年   48篇
  2011年   57篇
  2010年   26篇
  2009年   22篇
  2008年   41篇
  2007年   52篇
  2006年   35篇
  2005年   32篇
  2004年   33篇
  2003年   50篇
  2002年   34篇
  2001年   5篇
  2000年   6篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1993年   3篇
  1992年   5篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1982年   1篇
  1975年   1篇
排序方式: 共有633条查询结果,搜索用时 453 毫秒
121.
Endothelial lipase (EL) inhibitors have been shown to elevate HDL-C levels in pre-clinical murine models and have potential benefit in prevention and treatment of cardiovascular diseases. Modification of the 1-ethyl-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (DHP) lead, 1, led to the discovery of a series of potent tetrahydropyrimidinedione (THP) EL inhibitors. Synthesis and SAR studies including modification of the amide group, together with changes on the pyrimidinone core led to a series of arylcycloalkyl, indanyl, and tetralinyl substituted 5-amino or 5-hydroxypyrimidinedione-4-carboxamides. Several compounds were advanced to PK evaluation. Among them, compound 4a was one of the most potent with measurable ELHDL hSerum potency and compound 3g demonstrated the best overall pharmacokinetic parameters.  相似文献   
122.
In the Anthropocene, watershed chemical transport is increasingly dominated by novel combinations of elements, which are hydrologically linked together as ‘chemical cocktails.’ Chemical cocktails are novel because human activities greatly enhance elemental concentrations and their probability for biogeochemical interactions and shared transport along hydrologic flowpaths. A new chemical cocktail approach advances our ability to: trace contaminant mixtures in watersheds, develop chemical proxies with high-resolution sensor data, and manage multiple water quality problems. We explore the following questions: (1) Can we classify elemental transport in watersheds as chemical cocktails using a new approach? (2) What is the role of climate and land use in enhancing the formation and transport of chemical cocktails in watersheds? To address these questions, we first analyze trends in concentrations of carbon, nutrients, metals, and salts in fresh waters over 100 years. Next, we explore how climate and land use enhance the probability of formation of chemical cocktails of carbon, nutrients, metals, and salts. Ultimately, we classify transport of chemical cocktails based on solubility, mobility, reactivity, and dominant phases: (1) sieved chemical cocktails (e.g., particulate forms of nutrients, metals and organic matter); (2) filtered chemical cocktails (e.g., dissolved organic matter and associated metal complexes); (3) chromatographic chemical cocktails (e.g., ions eluted from soil exchange sites); and (4) reactive chemical cocktails (e.g., limiting nutrients and redox sensitive elements). Typically, contaminants are regulated and managed one element at a time, even though combinations of elements interact to influence many water quality problems such as toxicity to life, eutrophication, infrastructure corrosion, and water treatment. A chemical cocktail approach significantly expands evaluations of water quality signatures and impacts beyond single elements to mixtures. High-frequency sensor data (pH, specific conductance, turbidity, etc.) can serve as proxies for chemical cocktails and improve real-time analyses of water quality violations, identify regulatory needs, and track water quality recovery following storms and extreme climate events. Ultimately, a watershed chemical cocktail approach is necessary for effectively co-managing groups of contaminants and provides a more holistic approach for studying, monitoring, and managing water quality in the Anthropocene.  相似文献   
123.
Management or conservation targets based on demographic rates should be evaluated within the context of expected population dynamics of the species of interest. Wild populations can experience stable, cyclical, or complex dynamics, therefore undisturbed populations can provide background needed to evaluate programmatic success. Many raptor species have recovered from large declines caused by environmental contaminants, making them strong candidates for ongoing efforts to understand population dynamics and ecosystem processes in response to human‐caused stressors. Dynamic multistate occupancy models are a useful tool for analyzing species dynamics because they leverage the autocorrelation inherent in long‐term monitoring datasets to obtain useful information about the dynamic properties of population or reproductive states. We analyzed a 23‐year bald eagle monitoring dataset in a dynamic multistate occupancy modeling framework to assess long‐term nest occupancy and reproduction in Lake Clark National Park and Preserve, Alaska. We also used a hierarchical generalized linear model to understand changes in nest productivity in relation to environmental factors. Nests were most likely to remain in the same nesting state between years. Most notably, successful nests were likely to remain in use (either occupied or successful) and had a very low probability of transitioning to an unoccupied state in the following year. There was no apparent trend in the proportion of nests used by eagles through time, and the probability that nests transitioned into or out of the successful state was not influenced by temperature or salmon availability. Productivity was constant over the course of the study, although warm April minimum temperatures were associated with increased chick production. Overall our results demonstrate the expected nesting dynamics of a healthy bald eagle population that is largely free of human disturbance and can be used as a baseline for the expected dynamics for recovering bald eagle populations in the contiguous 48 states.  相似文献   
124.
125.
126.
Viruses that persist despite seemingly effective antiretroviral treatment (ART) and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the “shock and kill” strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis)] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD) to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to ~106 copies/mL was followed by a decline to < 10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35–50 days, followed by in vivo experimental depletion of CD8+ cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (~104 copies/ml) peaking at 5–12 days post-treatment. CD8+ cell depletion resulted in a more robust viral rebound (107 copies/ml) that was controlled upon CD8+ T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control. Comparison of the patterns of virus rebound after RMD administration and CD8+ cell depletion suggested that RMD impact on T cells is only transient and does not irreversibly alter the ability of SIV-specific T cells to control the reactivated virus.  相似文献   
127.
Whether initiation of antiretroviral therapy (ART) regimens aimed at achieving greater concentrations within gut associated lymphoid tissue (GALT) impacts the level of mucosal immune reconstitution, inflammatory markers and the viral reservoir remains unknown. We included 12 HIV- controls and 32 ART-naïve HIV patients who were randomized to efavirenz, maraviroc or maraviroc+raltegravir, each with fixed-dose tenofovir disoproxil fumarate/emtricitabine. Rectal and duodenal biopsies were obtained at baseline and at 9 months of ART. We performed a comprehensive assay of T-cell subsets by flow cytometry, T-cell density in intestinal biopsies, plasma and tissue concentrations of antiretroviral drugs by high-performance liquid chromatography/mass spectroscopy, and plasma interleukin-6 (IL-6), lipoteichoic acid (LTA), soluble CD14 (sCD14) and zonulin-1 each measured by ELISA. Total cell-associated HIV DNA was measured in PBMC and rectal and duodenal mononuclear cells. Twenty-six HIV-infected patients completed the follow-up. In the duodenum, the quadruple regimen resulted in greater CD8+ T-cell density decline, greater normalization of mucosal CCR5+CD4+ T-cells and increase of the naïve/memory CD8+ T-cell ratio, and a greater decline of sCD14 levels and duodenal HIV DNA levels (P = 0.004 and P = 0.067, respectively), with no changes in HIV RNA in plasma or tissue. Maraviroc showed the highest drug distribution to the gut tissue, and duodenal concentrations correlated well with other T-cell markers in duodenum, i.e., the CD4/CD8 ratio, %CD4+ and %CD8+ HLA-DR+CD38+ T-cells. Maraviroc use elicited greater activation of the mucosal naïve CD8+ T-cell subset, ameliorated the distribution of the CD8+ T-cell maturational subsets and induced higher improvement of zonulin-1 levels. These data suggest that combined CCR5 and integrase inhibitor based combination therapy in ART treatment naïve patients might more effectively reconstitute duodenal immunity, decrease inflammatory markers and impact on HIV persistence by cell-dependent mechanisms, and show unique effects of MVC in duodenal immunity driven by higher drug tissue penetration and possibly by class-dependent effects.  相似文献   
128.
3-Methylindole has been shown in previous work to cause pulmonary edema and emphysema in cattle and goats. In this paper, evidence is presented to show that 3-methylindole induces structural perturbations in bovine erythrocyte membranes. The structural perturbations which were induced as a function of 3-methylindole concentration in the membranes were measured by EPR using the attachment of a maleimide spin label to the sulfhydryl groups of membrane proteins and by intercalation of methyl-5- doxylstearate, methyl-12-doxylstearate, and methyl-16-doxylstearate into the lipid region. The EPR spectra of the maleimide spin-labeled membrane proteins became more immobilized as the concentration of 3-methyl-indole increased. The order parameter describing the EPR spectra of methyl-5-doxylstearate decreased from 0.69 to 0.55 as the concentration of 3-methylindole increased. The acyl chains in the region of the carbon 5 posotion were converted to a less ordered structure. The EPR-spectra of methyl-12-doxylstearate was a superposition representing at least three tumbling rates. As the concentration of 3-methylindole increased, the major fraction of the methyl-12-doxylstearate probes experienced an increase in tumbling rate and a smaller fraction is observed in a strongly immobilized state. The EPR spectra of methyl-16-doxylstearate were not perceptibly changed in the presence of 3-methylindole.The concentration dependence suggests that 3-methylindole preferentially intercalates into the ordered region of the alkyl chains sampled by the methyl-5-doxylstearate. These results confirm that 3-methylindole induced structural changes at the molecular level.  相似文献   
129.
The livR gene encoding the repressor for high-affinity branched-chain amino acid transport in Escherichia coli has been cloned from a library prepared from the episome F106. The inserted DNA fragment from the initial cloned plasmid, pANT1, complemented two independent, spontaneously derived, regulatory mutations. Subcloning as well as the creation of deletions with Bal31 exonuclease revealed that the entire regulatory region is contained within a 1.1-kb RsaI-SalI fragment. Expression of the pANT plasmids in E. coli minicells showed that the regulatory region encodes one detectable protein with an apparent molecular weight of 21,000. DNA sequencing revealed one open reading frame of 501 bp encoding a protein with a calculated MW of 19,155. The potential secondary structure of the regulatory protein has been predicted and it suggests that the carboxy terminus may fold into three consecutive alpha helices. These results suggests that the livR gene encodes a repressor which plays a role in the regulation of expression of the livJ and the livK transport genes.  相似文献   
130.
Hyperglycemia in the hospitalized setting is common, especially in patients that receive nutritional support either continuously or intermittently. As the liver and muscle are the major sites of glucose disposal, we hypothesized their metabolic adaptations are sensitive to the pattern of nutrient delivery. Chronically catheterized, well-controlled depancreatized dogs were placed on one of three isocaloric diets: regular chow diet once daily (Chow) or a simple nutrient diet (ND) that was given either once daily (ND-4) or infused continuously (ND-C). Intraportal insulin was infused to maintain euglycemia. After 5 days net hepatic (NHGU) and muscle (MGU) glucose uptake and oxidation were assessed at euglycemia (120 mg/dl) and hyperglycemia (200 mg/dl) in the presence of basal insulin. While hyperglycemia increased both NHGU and MGU in Chow, NHGU was amplified in both groups receiving ND. The increase was associated with enhanced activation of glycogen synthase, glucose oxidation and suppression of pyruvate dehydrogenase kinase-4 (PDK-4). Accelerated glucose-dependent muscle glucose uptake was only evident with ND-C. This was associated with a decrease in PDK-4 expression and an increase in AMP-activated protein kinase (AMPK) phosphorylation. Interestingly, ND-C markedly increased hepatic FGF-21 expression. Thus, augmentation of carbohydrate disposal in the liver, as opposed to the muscle, is not dependent on the pattern of nutrient delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号