全文获取类型
收费全文 | 1043篇 |
免费 | 85篇 |
专业分类
1128篇 |
出版年
2023年 | 2篇 |
2022年 | 11篇 |
2021年 | 18篇 |
2020年 | 12篇 |
2019年 | 18篇 |
2018年 | 31篇 |
2017年 | 26篇 |
2016年 | 34篇 |
2015年 | 57篇 |
2014年 | 54篇 |
2013年 | 84篇 |
2012年 | 71篇 |
2011年 | 91篇 |
2010年 | 50篇 |
2009年 | 37篇 |
2008年 | 68篇 |
2007年 | 61篇 |
2006年 | 53篇 |
2005年 | 54篇 |
2004年 | 50篇 |
2003年 | 44篇 |
2002年 | 39篇 |
2001年 | 10篇 |
2000年 | 7篇 |
1999年 | 9篇 |
1998年 | 6篇 |
1997年 | 13篇 |
1996年 | 8篇 |
1995年 | 15篇 |
1994年 | 10篇 |
1993年 | 4篇 |
1992年 | 3篇 |
1991年 | 8篇 |
1990年 | 8篇 |
1989年 | 6篇 |
1988年 | 8篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1985年 | 7篇 |
1984年 | 6篇 |
1983年 | 3篇 |
1982年 | 9篇 |
1981年 | 3篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1971年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有1128条查询结果,搜索用时 13 毫秒
81.
Dalfrà MG Pacini G Parretti E Ragazzi E Mello G Lapolla A 《American journal of physiology. Endocrinology and metabolism》2011,301(1):E25-E30
The "Barker hypothesis" suggests that low birth weight might predict future risk of developing obesity, cardiovascular disease, and type 2 diabetes. Identification of the causes of fetal growth restriction (FGR) is critical for preventive and management strategies. Some studies indicate that maternal carbohydrate metabolism might be involved in FGR development. We aimed to evaluate, in a large number of normotensive pregnant women with normal glucose tolerance, the effect of insulin sensitivity and β-cell function on unexplained fetal growth. A total of 1,814 Caucasian pregnant women with normal prepregnancy body mass index were tested with a 75-g, 2-h glucose load (24-28 gestation wk). Insulin sensitivity was evaluated with fasting (QUICKI) and dynamic index (OGIS) and β-cell function with a modified insulinogenic index as ΔAUC(insulin)/ΔAUC(glucose) and disposition index. FGR was a birth weight below the 5th percentile for gestational age. FGR developed in 99 (5.5%) pregnant women that showed significantly higher QUICKI, OGIS, insulinogenic, and disposition index with respect to women with normal-weight babies (P < 0.0001). By using multiple regression analysis in the FRG group, QUICKI and OGIS appeared as significant independent variables (P < 0.0001 and P < 0.0366, respectively). We conclude that elevated insulin sensitivity seems to be one of the factors involved in determining unexplained fetal growth retardation; its assessment, even only in the fasting state, could be useful to guide any possible monitoring and therapeutic strategies to reduce fetal complications. 相似文献
82.
Corallini F Celeghini C Rimondi E di Iasio MG Gonelli A Secchiero P Zauli G 《Journal of cellular physiology》2011,226(9):2279-2286
The soluble member of the TNF-R superfamily osteoprotegerin (OPG) is abundantly released under basal conditions by both mesenchymal stem cells (MSC) and fibroblasts and by endothelial cells upon stimulation with inflammatory cytokines. Since MSC, fibroblasts and endothelial cells represent key elements of the normal and tumor microenvironment and express detectable levels of surface TRAIL receptors, we investigated the effect of TRAIL on OPG release. Unexpectedly, recombinant TRAIL decreased the spontaneous OPG release in all cell types examined. Moreover, TRAIL decreased OPG release also in stromal cells co-cultured with lymphoma cells and counteracted the OPG induction by TN-alpha in HUVEC and MSC. Such down-regulation was not due to a masking effect in the ELISA quantification of the OPG released in the culture supernatants due to binding of OPG to its ligands (TRAIL and RANKL), as demonstrated by competition experiments with recombinant TRAIL and by the lack of RANKL release/induction. In addition, OPG down-regulation was not due to induction of cytotoxic effects by TRAIL, since the degree of apoptosis in response to TRAIL was negligible in all primary cell types. With regards to the possible molecular mechanism accounting for the down-regulation of OPG release by TRAIL, we found that treatment of MSC with TRAIL significantly decreased the phosphorylation levels of p38/MAPK. There is a suggestion that this pathway is involved in the stabilization of OPG mRNA. In this respect, the ability of TRAIL to decrease the release of OPG, in the absence of cell cytotoxicity, was mimicked by the p38/MAPK inhibitor SB203580. 相似文献
83.
Borrello MG Mercalli E Perego C Degl'Innocenti D Ghizzoni S Arighi E Eroini B Rizzetti MG Pierotti MA 《Biochemical and biophysical research communications》2002,296(3):515-522
The receptor tyrosine kinase RET, with a known role in embryonic development and in human pathologies, is alternatively spliced to yield at least two functional isoforms, which differ only in their carboxyl terminal. Enigma protein is a member of the PDZ-LIM family and is known to interact with the short isoform of RET/PTC2, a chimeric oncoprotein isolated from papillary thyroid carcinoma. Here, we show that Enigma also interacts in intact cells with the short isoform of RET-wt and of its pathologic mutants associated to MEN2 syndromes, RET-C634R and RET-M918T. In contrast, Enigma binds all the corresponding RET long isoforms very poorly and colocalizes with short but not long RET/PTC2 isoforms. The RET docking tyrosine for Enigma is the last but one before the divergence between the two isoforms and we demonstrated that short-isoform-specific amino acid residues +2 to +4 to this tyrosine are required for the interaction of RET/PTC2 with Enigma. 相似文献
84.
de Koning-Ward TF Olivieri A Bertuccini L Hood A Silvestrini F Charvalias K Berzosa Díaz P Camarda G McElwain TF Papenfuss T Healer J Baldassarri L Crabb BS Alano P Ranford-Cartwright LC 《Molecular microbiology》2008,67(2):278-290
Osmiophilic bodies are membrane-bound vesicles, found predominantly in Plasmodium female gametocytes, that become progressively more abundant as the gametocyte reaches full maturity. These vesicles lie beneath the subpellicular membrane of the gametocyte, and the release of their contents into the parasitophorous vacuole has been postulated to aid in the escape of gametocytes from the erythrocyte after ingestion by the mosquito. Currently, the only protein known to be associated with osmiophilic bodies in Plasmodium falciparum is Pfg377, a gametocyte-specific protein expressed at the onset of osmiophilic body development. Here we show by targeted gene disruption that Pfg377 plays a fundamental role in the formation of these organelles, and that female gametocytes lacking the full complement of osmiophilic bodies are significantly less efficient both in vitro and in vivo in their emergence from the erythrocytes upon induction of gametogenesis, a process whose timing is critical for fertilization with the short-lived male gamete. This reduced efficiency of emergence explains the significant defect in oocyst formation in mosquitoes fed blood meals containing Pfg377-negative gametocytes, resulting in an almost complete blockade of infection. 相似文献
85.
Hongqiao Li Oleksandr Gakh Douglas Y. Smith IV Grazia Isaya 《The Journal of biological chemistry》2009,284(33):21971-21980
Mitochondrial biosynthesis of iron-sulfur clusters (ISCs) is a vital process involving the delivery of elemental iron and sulfur to a scaffold protein via molecular interactions that are still poorly defined. Analysis of highly conserved components of the yeast ISC assembly machinery shows that the iron-chaperone, Yfh1, and the sulfur-donor complex, Nfs1-Isd11, directly bind to each other. This interaction is mediated by direct Yfh1-Isd11 contacts. Moreover, both Yfh1 and Nfs1-Isd11 can directly bind to the scaffold, Isu1. Binding of Yfh1 to Nfs1-Isd11 or Isu1 requires oligomerization of Yfh1 and can occur in an iron-independent manner. However, more stable contacts are formed when Yfh1 oligomerization is normally coupled with the binding and oxidation of Fe2+. Our observations challenge the view that iron delivery for ISC synthesis is mediated by Fe2+-loaded monomeric Yfh1. Rather, we find that the iron oxidation-driven oligomerization of Yfh1 promotes the assembly of stable multicomponent complexes in which the iron donor and the sulfur donor simultaneously interact with each other as well as with the scaffold. Moreover, the ability to store ferric iron enables oligomeric Yfh1 to adjust iron release depending on the presence of Isu1 and the availability of elemental sulfur and reducing equivalents. In contrast, the use of anaerobic conditions that prevent Yfh1 oligomerization results in inhibition of ISC assembly on Isu1. These findings suggest that iron-dependent oligomerization is a mechanism by which the iron donor promotes assembly of the core machinery for mitochondrial ISC synthesis.ISC3 biosynthesis is an essential function that eukaryotic cells initiate in mitochondria and probably other cellular compartments using three core components: a sulfur donor, an iron donor, and an ISC assembly scaffold (1, 2). In yeast mitochondria, the cysteine-desulfurase, Nfs1, and the iron-chaperone, Yfh1, are believed to provide sulfur and iron, respectively, for ISC assembly on the Isu1 scaffold (1), whereas the Nfs1-binding protein, Isd11, has been shown to stabilize Nfs1 (3). These components are highly conserved and the human orthologues of Yfh1 (frataxin), Isu1 (ISCU), and Isd11 (ISD11) are implicated in the etiology of severe disorders including Friedreich ataxia and mitochondrial myopathy (4).Previous studies have underscored the complexity of the interactions among eukaryotic ISC assembly components as well as their metal dependence. Supplementation of mitochondrial lysates with Fe2+ under aerobic conditions led to co-isolation of Yfh1 and Isu1 along with Nfs1 and Isd11 by pulldown or immunoprecipitation assays (5–7). Furthermore, aerobic preincubation of histidine-tagged Yfh1 monomer with Fe2+ enabled Isu1 to be pulled down by Yfh1 in the absence of other proteins (5). These studies have led to the current view that iron delivery for yeast ISC synthesis involves direct contacts between iron-loaded monomeric Yfh1 and Isu1 (5–7). Although Yfh1 oligomerization is normally coupled with iron binding, oxidation, and storage (5, 8), the possibility that Isu1 might also interact with oligomeric Yfh1 has remained largely unexplored.Similar to Yfh1, human frataxin was found to interact with multiple ISC assembly components in human cells; however, in this case immunoprecipitation data suggested that frataxin binds to ISCU indirectly, via nickel-dependent contacts with ISD11 (9). Whether direct interactions occur between Yfh1 and Isd11 has not yet been examined.While previous studies focused primarily on Yfh1-Isu1 and frataxin-ISD11 interactions, it is likely that the coordinate delivery of potentially toxic sulfur and iron to Isu1/ISCU involves multiple close interactions whereby the sulfur donor and the iron donor simultaneously interact with each other and with the ISC scaffold, as proposed for prokaryotic ISC assembly (10). However, it is currently unknown whether monomeric Yfh1/frataxin may form direct contacts with more than one partner, and the structure of the eukaryotic ISC assembly machinery is completely undefined. We show that iron oxidation-dependent oligomerization enables Yfh1 to have simultaneous direct interactions with Nfs1-Isd11 and Isu1. Our data provide insights about the sequence of events and the molecular architecture required for the initial step in mitochondrial ISC assembly. 相似文献
86.
Paula Ragel Sebastian Streb Regina Feil Mariam Sahrawy Maria Grazia Annunziata John E. Lunn Samuel Zeeman ángel Mérida 《Plant physiology》2013,163(1):75-85
STARCH SYNTHASE4 (SS4) is required for proper starch granule initiation in Arabidopsis (Arabidopsis thaliana), although SS3 can partially replace its function. Unlike other starch-deficient mutants, ss4 and ss3/ss4 mutants grow poorly even under long-day conditions. They have less chlorophyll and carotenoids than the wild type and lower maximal rates of photosynthesis. There is evidence of photooxidative damage of the photosynthetic apparatus in the mutants from chlorophyll a fluorescence parameters and their high levels of malondialdehyde. Metabolite profiling revealed that ss3/ss4 accumulates over 170 times more ADP-glucose (Glc) than wild-type plants. Restricting ADP-Glc synthesis, by introducing mutations in the plastidial phosphoglucomutase (pgm1) or the small subunit of ADP-Glc pyrophosphorylase (aps1), largely restored photosynthetic capacity and growth in pgm1/ss3/ss4 and aps1/ss3/ss4 triple mutants. It is proposed that the accumulation of ADP-Glc in the ss3/ss4 mutant sequesters a large part of the plastidial pools of adenine nucleotides, which limits photophosphorylation, leading to photooxidative stress, causing the chlorotic and stunted growth phenotypes of the plants.The metabolism of starch plays an essential role in the physiology of plants. Starch breakdown provides the plant with carbon skeletons and energy when the photosynthetic machinery is inactive (transitory starch) or in the processes of germination and sprouting (storage starch). Deficiencies in the accumulation of transitory starch in Arabidopsis (Arabidopsis thaliana) have been described previously, specifically in mutants affected in the plastidial phosphoglucomutase (PGM1) or the small subunit (APS1) of the ADP-Glc pyrophosphorylase (AGPase). While they are described as “starchless,” they actually contain small amounts of starch (1%–2% of the wild-type levels; Streb et al., 2009) and share similar phenotypic alterations, such as growth retardation when cultivated under a short-day photoregime and increased levels of soluble sugars during the light phase and reduced levels during the night (Caspar et al., 1985; Lin et al., 1988b; Schulze et al., 1991). Carbon partitioning is altered in these plants. As photosynthate cannot be accumulated as starch, it is diverted via hexose phosphates in the cytosol to the synthesis of Suc, which accumulates together with the hexose sugars, Glc and Fru (Caspar et al., 1985). In Arabidopsis, there are five starch synthase isoforms: one granule-bound starch synthase and four soluble starch synthases: SS1, SS2, SS3, and SS4. We have described previously an Arabidopsis mutant plant lacking SS3 and SS4 that is also severely affected in the accumulation of starch (Szydlowski et al., 2009). SS4 is involved in the initiation of the starch granule and controls the number of granules per chloroplast (Roldán et al., 2007). The elimination of SS3 in an ss4 background leads to an absence of starch in most of the chloroplasts, despite the fact that SS1 and SS2 are still present and total starch synthase activity is only reduced by 35% (Szydlowski et al., 2009). However, a very small proportion of chloroplasts of this mutant plant contain a single huge starch granule, which is also a characteristic of chloroplasts in the ss4 single mutant (D’Hulst and Mérida, 2012). Thus, like aps1 and pgm1, ss3/ss4 plants contain only small amounts of starch. However, unlike aps1 or pgm1 plants, most of the cells of this mutant have empty chloroplasts, without starch (Szydlowski et al., 2009).In this work, we have analyzed the phenotypic effects of the impaired starch accumulation of ss3/ss4 plants. We show that this mutant displays phenotypic changes that are not found in other mutants with very low levels of starch, such as aps1 or pgm1 plants. We provide evidence that extremely high levels of ADP-Glc accumulate in the ss3/ss4 plants. Using reverse genetics to block the pathway of starch synthesis upstream of the starch synthases reduced the level of ADP-Glc in ss3/ss4 plants and reverted the other phenotypic traits. This suggests that ADP-Glc accumulation is the causal factor behind the chlorotic and stunted growth phenotypes of the ss3/ss4 mutant. 相似文献
87.
The 2-arachidonoylglycerol effect on myosin light chain phosphorylation in human platelets 总被引:1,自引:0,他引:1
In human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) stimulates some important pathways leading to thromboxane B2 formation, calcium intracellular elevation, ATP secretion and actin polymerisation. The aim of the present study was to examine the 2-AG effect on myosin light chain (MLC) phosphorylation and to investigate the mechanisms involved. We demonstrated that 2-AG induced a rapid MLC phosphorylation, stimulating both the RhoA kinase (ROCK) and MLC kinase (MLCK) in a dose and time-dependent manner. In addition MLC phosphorylation was strengthened through the MLC phosphatase inhibition. MLC phosphatase inhibition was accomplished through the RhoA/ROCK and protein kinase C mediated phosphorylation of MLC phosphatase inhibiting subunits MYPT1 and CPI-17. The presence of CB1 receptor in human platelets and the involvement of CB1 receptor in MLC phosphorylation and MLC phosphatase inhibition was shown. 相似文献
88.
89.
90.
Maurizio Callari Matteo Dugo Valeria Musella Edoardo Marchesi Giovanna Chiorino Maurizia Mello Grand Marco Alessandro Pierotti Maria Grazia Daidone Silvana Canevari Loris De Cecco 《PloS one》2012,7(9)