首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1996年   2篇
  1990年   1篇
排序方式: 共有44条查询结果,搜索用时 93 毫秒
21.
Osteoporosis has been described extensively in adult thalassemics. Fewer studies have been reported in thalassemic children. In this article, we measured the bone mineral density (BMD) of Lebanese beta-thalassemic children before institution of a balanced transfusion-chelation regimen, in comparison with that of healthy controls, and studied its correlation with various demographic and biological parameters. Both groups, controls and thalassemics were comparable with respect to age, sex, socioeconomic and regional distribution. On the other hand, thalassemics had a significantly lower height age (p<0.001), lower bone age (p=0.001), lower sexual maturation (p=0.004), lower absolute BMD values and larger negative BMD-Z scores (p<0.001). Within the thalassemic group, BMD correlated significantly with luteinizing hormone (LH) and follicle stimulating hormone (FSH), estradiol and testosterone values, as well as with the pretransfusion hematocrit, but not with other endocrine or bone metabolism parameters. We conclude that Lebanese beta-thalassemic children have a significantly lower BMD than their healthy counterparts due, in part, to their slower physical development. A major contributor seems to be the low-transfusion regimen followed by these patients, as well as the endocrine dysfunction which was detected in about 25% of them.  相似文献   
22.
The antiviral and antiproliferative effects of interferons are mediated in part by the 2'-5' oligoadenylate-RNase L RNA decay pathway. RNase L is an endoribonuclease that requires 2'-5' oligoadenylates to cleave single-stranded RNA. In this report we present evidence demonstrating a role for RNase L in translation. We identify and characterize the human translation termination factor eRF3/GSPT1 as an interacting partner of RNase L. We show that interaction of eRF3 with RNase L leads to both increased translation readthrough efficiency at premature termination codons and increased +1 frameshift efficiency at the antizyme +1 frameshift site. On the basis of our results, we present a model describing how RNase L is involved in regulating gene expression by modulating the translation termination process.  相似文献   
23.
Proteases are one of the largest and best-characterized families of enzymes in the human proteome. Unfortunately, the understanding of protease function in the context of complex proteolytic cascades remains in its infancy. One major reason for this gap in understanding is the lack of technologies that allow direct assessment of protease activity. We report here an optimized solid-phase synthesis protocol that allows rapid generation of activity-based probes (ABPs) targeting a range of cysteine protease families. These reagents selectively form covalent bonds with the active-site thiol of a cysteine protease, allowing direct biochemical profiling of protease activities in complex proteomes. We present a number of probes containing either a single amino acid or an extended peptide sequence that target caspases, legumains, gingipains and cathepsins. Biochemical studies using these reagents highlight their overall utility and provide insight into the biochemical functions of members of these protease families.  相似文献   
24.
25.
The vegetation dynamics of the savanna ecosystem are driven by complex interactions between biotic and abiotic factors, and thus are expected to exhibit emergent properties of biocomplexity. We explore the relative importance of static and dynamic drivers in explaining the patterns of mortality of large trees in the Kruger National Park, South Africa. Data on large trees were collected from 22 transects in April 2006, and these transects were re‐sampled in November 2008. Of the 2546 individually‐identified trees that were re‐sampled, 290 (11.4%) died in the interim. We tested several competing hypotheses with varying levels of complexity, and found that mortality of large trees was affected mainly by both static (geophysical and landscape characteristics) and dynamic (elephant damage and fire) factors that were either additive or interactive in their effects. Elephant damage was the main predictor of tree mortality, but fire also played an important role depending on the landscape type. Other static variables such as position‐on‐slope, height below canopy, and altitude had weak effects in explaining tree mortality. These results indicate that keystone features such as large trees, show differential vulnerability to mortality that is landscape‐specific. For conservation managers, this implies that the dynamic drivers (elephant and fire) of tree mortality have to be managed at the specific landscape‐level. We suggest that this emergent biocomplexity in the spatial and temporal patterns of large tree mortality is not unique to the African savannas, but is likely widespread across heterogeneous landscapes.  相似文献   
26.
27.
Accumulation of microdamage in aging and disease can cause skeletal fragility and is one of several factors contributing to osteoporotic fractures. To better understand the role of microdamage in fragility fracture, the mechanisms of bone failure must be elucidated on a tissue-level scale where interactions between bone matrix properties, the local biomechanical environment, and bone architecture are concurrently examined for their contributions to microdamage formation. A technique combining histological damage assessment of individual trabeculae with linear finite element solutions of trabecular von Mises and principal stress and strain was used to compare the damage initiation threshold between pre-menopausal (32-37 years, n=3 donors) and post-menopausal (71-80 years, n=3 donors) femoral cadaveric bone. Strong associations between damage morphology and stress and strain parameters were observed in both groups, and an age-related decrease in undamaged trabecular von Mises stress was detected. In trabeculae from younger donors, the 95% CI for von Mises stress on undamaged regions ranged from 50.7-67.9MPa, whereas in trabeculae from older donors, stresses were significantly lower (38.7-50.2, p<0.01). Local microarchitectural analysis indicated that thinner, rod-like trabeculae oriented along the loading axis are more susceptible to severe microdamage formation in older individuals, while only rod-like architecture was associated with severe damage in younger individuals. This study therefore provides insight into how damage initiation and morphology relate to local trabecular microstructure and the associated stresses and strains under loading. Furthermore, by comparison of samples from pre- and post-menopausal women, the results suggest that trabeculae from younger individuals can sustain higher stresses prior to microdamage initiation.  相似文献   
28.
Respiratory transmission is the primary route of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Angiotensin I converting enzyme 2 (ACE2) is the known receptor of SARS-CoV-2 surface spike glycoprotein for entry into human cells. A recent study reported absent to low expression of ACE2 in a variety of human lung epithelial cell samples. Three bioprojects (PRJEB4337, PRJNA270632 and PRJNA280600) invariably found abundant expression of ACE1 (a homolog of ACE2 and also known as ACE) in human lungs compared to very low expression of ACE2. In fact, ACE1 has a wider and more abundant tissue distribution compared to ACE2. Although it is not obvious from the primary sequence alignment of ACE1 and ACE2, comparison of X-ray crystallographic structures show striking similarities in the regions of the peptidase domains (PD) of these proteins, which is known (for ACE2) to interact with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Critical amino acids in ACE2 that mediate interaction with the viral spike protein are present and organized in the same order in the PD of ACE1. In silico analysis predicts comparable interaction of SARS-CoV-2 spike protein with ACE1 and ACE2. In addition, this study predicts from a list of 1263 already approved drugs that may interact with ACE2 and/or ACE1 and potentially interfere with the entry of SARS-CoV-2 inside the host cells.  相似文献   
29.
Most proteases are synthesized as inactive precursors to protect the synthetic machinery of the cell and allow timing of activation. The mechanisms used to render latency are varied but tend to be conserved within protease families. Proteases belonging to the caspase family have a unique mechanism mediated by transitions of two surface loops, and on the basis of conservation of mechanism one would expect this to be preserved by caspase relatives. We have been able to express the full-length precursor of the Arg-specific caspase relative from the bacterium Porphyromonas gingivalis, Arg-gingipain-B, and we show that it contains N- and C-terminal extensions that render a low amount of latency, meaning that the zymogen is substantially active. Three sequential autolytic processing steps at the N and C terminus are required for full activity, and the N-propeptide may serve as an intramolecular chaperone rather than an inhibitory peptide. Each step in activation requires the previous step, and an affinity probe reveals that incremental activity enhancements are achieved in a stepwise manner.  相似文献   
30.
Human paracaspase has been predicted to be a member of the protein structural fold that encompasses protease clan CD. To determine whether paracaspase has catalytic activity we have expressed the region corresponding to the catalytic domain and used protease activity-based chemical probes to profile the putative active site. A leucine-based acyloxymethyl ketone probe that covalently labels cysteine proteases discloses a hydrophobic P 1 preference in the putative active site. The probe covalently labels Cys539, which is not the predicted catalytic site based on structural and sequence comparisons with other clan CD proteases. Using a combinatorial peptide substrate library approach we have been unable to detect amidolytic activity of paracaspase, implying that if it is a protease it must be very specific. We suggest a switch in the use of catalytic residues to generate an enzyme overlapping the canonical clan CD protease active site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号