首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   795篇
  免费   80篇
  875篇
  2023年   2篇
  2022年   15篇
  2021年   21篇
  2020年   6篇
  2019年   21篇
  2018年   20篇
  2017年   8篇
  2016年   33篇
  2015年   37篇
  2014年   43篇
  2013年   50篇
  2012年   72篇
  2011年   58篇
  2010年   45篇
  2009年   37篇
  2008年   50篇
  2007年   45篇
  2006年   45篇
  2005年   36篇
  2004年   39篇
  2003年   32篇
  2002年   31篇
  2001年   12篇
  2000年   7篇
  1999年   8篇
  1998年   16篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   8篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   4篇
  1964年   1篇
排序方式: 共有875条查询结果,搜索用时 15 毫秒
81.
82.
83.
The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable unique approaches to biological and medical challenges. Here we describe a motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of an affinity-matured complex reveal binding is entirely through the designed interface residues. Surprisingly, in the in vitro evolved complex one of the partners is rotated 180° relative to the original design model, yet still maintains the central computationally designed hotspot interaction and preserves the character of many peripheral interactions. This work demonstrates that high-affinity protein interfaces can be created by designing complementary interaction surfaces on two noninteracting partners and underscores remaining challenges.  相似文献   
84.
Examples of animals that switch activity times between nocturnality and diurnality in nature are relatively infrequent. Furthermore, the mechanism for switching activity time is not clear: does a complete inversion of the circadian system occur in conjunction with activity pattern? Are there switching centers downstream from the internal clock that interpret the clock differently? Or does the switch reflect a masking effect? Answering these key questions may shed light on the mechanisms regulating activity patterns and their evolution. The golden spiny mouse (Acomys russatus) can switch between nocturnal and diurnal activity. This study investigated the relationship between its internal circadian clock and its diurnal activity pattern observed in the field. The goal is to understand the mechanisms underlying species rhythm shifts in order to gain insight into the evolution of activity patterns. All golden spiny mice had opposite activity patterns in the field than those under controlled continuous dark conditions in the laboratory. Activity and body temperature patterns in the field were diurnal, while in the laboratory all individuals immediately showed a free-running rhythm starting with a nocturnal pattern. No phase transients were found toward the preferred nocturnal activity pattern, as would be expected in the case of true entrainment. Moreover, the fact that the free-running activity patterns began from the individuals' subjective night suggests that golden spiny mice are nocturnal and that their diurnality in their natural habitat in the field results from a change that is downstream to the internal clock or reflects a masking effect.  相似文献   
85.
High-resolution crystal structures of large ribosomal subunits from Deinococcus radiodurans complexed with tRNA-mimics indicate that precise substrate positioning, mandatory for efficient protein biosynthesis with no further conformational rearrangements, is governed by remote interactions of the tRNA helical features. Based on the peptidyl transferase center (PTC) architecture, on the placement of tRNA mimics, and on the existence of a two-fold related region consisting of about 180 nucleotides of the 23S RNA, we proposed a unified mechanism integrating peptide bond formation, A-to-P site translocation, and the entrance of the nascent protein into its exit tunnel. This mechanism implies sovereign, albeit correlated, motions of the tRNA termini and includes a spiral rotation of the A-site tRNA-3' end around a local two-fold rotation axis, identified within the PTC. PTC features, ensuring the precise orientation required for the A-site nucleophilic attack on the P-site carbonyl-carbon, guide these motions. Solvent mediated hydrogen transfer appears to facilitate peptide bond formation in conjunction with the spiral rotation. The detection of similar two-fold symmetry-related regions in all known structures of the large ribosomal subunit, indicate the universality of this mechanism, and emphasizes the significance of the ribosomal template for the precise alignment of the substrates as well as for accurate and efficient translocation. The symmetry-related region may also be involved in regulatory tasks, such as signal transmission between the ribosomal features facilitating the entrance and the release of the tRNA molecules. The protein exit tunnel is an additional feature that has a role in cellular regulation. We showed by crystallographic methods that this tunnel is capable of undergoing conformational oscillations and correlated the tunnel mobility with sequence discrimination, gating and intracellular regulation.  相似文献   
86.
87.
88.
Many lines of evidence suggest that oxidative stress resulting in reactive oxygen species (ROS) generation and inflammation play a pivotal role in the age-associated cognitive decline and neuronal loss in neurodegenerative diseases including Alzheimer's (AD), Parkinson's (PD) and Huntington's diseases. One cardinal chemical pathology observed in these disorders is the accumulation of iron at sites where the neurons die. The buildup of an iron gradient in conjunction with ROS (superoxide, hydroxyl radical and nitric oxide) are thought to constitute a major trigger in neuronal toxicity and demise in all these diseases. Thus, promising future treatment of neurodegenerative diseases and aging depends on availability of effective brain permeable, iron-chelatable/radical scavenger neuroprotective drugs that would prevent the progression of neurodegeneration. Tea flavonoids (catechins) have been reported to possess potent iron-chelating, radical-scavenging and anti-inflammatory activities and to protect neuronal death in a wide array of cellular and animal models of neurological diseases. Recent studies have indicated that in addition to the known antioxidant activity of catechins, other mechanisms such as modulation of signal transduction pathways, cell survival/death genes and mitochondrial function, contribute significantly to the induction of cell viability. This review will focus on the multifunctional properties of green tea and its major component (-)-epigallocatechin-3-gallate (EGCG) and their ability to induce neuroprotection and neurorescue in vitro and in vivo. In particular, their transitional metal (iron and copper) chelating property and inhibition of oxidative stress.  相似文献   
89.
Barnea E  Sorkin R  Ziv T  Beer I  Admon A 《Proteomics》2005,5(13):3367-3375
Prefractionations of proteins prior to their proteolysis, chromatography, and MS/MS analyses help reduce complexity and increase the yield of protein identifications. A number of methods were evaluated here for prefractionating serum samples distributed to the participating laboratories as part of the human Plasma Proteome Project. These methods include strong cation exchange (SCX) chromatography, slicing of SDS-PAGE gel bands, and liquid-phase IEF of the proteins. The fractionated proteins were trypsinized and the resulting peptides were resolved and analyzed by multidimensional protein identification technology coupled to IT MS/MS. The MS/MS spectra were clustered, combined, and searched against the IPI protein databank using Pep-Miner. The identification results were evaluated for the efficacy of the different prefractionation methodologies to identify larger numbers of proteins at higher confidence and to achieve the best coverage of the proteins with the identified peptides. Prefractionation based on SCX resulted in the largest number of identified proteins, followed by gel slices and then the liquid-phase IEF. An important observation was that each of the methods revealed a set of unique proteins, some identified with high confidence. Therefore, for comprehensive identification of the serum proteins, several different prefractionation approaches should be used in parallel.  相似文献   
90.
Conjugation of ubiquitin to an internal lysine is the initial step in the degradation of the majority of the substrates of the ubiquitin system. For several substrates, it has been shown that the first ubiquitin moiety is conjugated to the N-terminal residue. In all these substrates, however, the internal lysines also played a role in modulating their stability. To better understand the physiological significance of this novel mode of modification, it was important to identify proteins in which degradation is completely dependent on N-terminal ubiquitination. Also, although the experimental evidence for N-terminal ubiquitination is rather strong, nevertheless, it has remained indirect. Here we demonstrate that an important group of proteins that are targeted via N-terminal ubiquitination are the naturally occurring lysine-less proteins such as the human papillomavirus (HPV)-58 E7 oncoprotein and the cell cycle inhibitor and tumor suppressor p16(INK4a). For these proteins, the only residue that can be targeted is the N-terminal residue. Interestingly, p16(INK4a) is degraded in a cell density-dependent manner. Importantly, we provide for the first time direct evidence for N-terminal ubiquitination. Analysis of tryptic digest of the ubiquitin conjugate of HPV-58 E7 revealed a fusion peptide that is composed of the C-terminal domain of ubiquitin and the N-terminal domain of E7. With the abundance of native lysine-less proteins, among which are important viral and cell regulators, this novel mode of protein targeting has implications for both physiological and pathophysiological processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号