首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   83篇
  2023年   2篇
  2022年   12篇
  2021年   21篇
  2020年   6篇
  2019年   21篇
  2018年   20篇
  2017年   8篇
  2016年   33篇
  2015年   38篇
  2014年   42篇
  2013年   50篇
  2012年   73篇
  2011年   57篇
  2010年   45篇
  2009年   38篇
  2008年   51篇
  2007年   46篇
  2006年   45篇
  2005年   36篇
  2004年   40篇
  2003年   31篇
  2002年   31篇
  2001年   12篇
  2000年   2篇
  1999年   7篇
  1998年   14篇
  1997年   4篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1989年   6篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1982年   5篇
  1981年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   4篇
  1966年   1篇
排序方式: 共有861条查询结果,搜索用时 31 毫秒
771.
Studies from our laboratory have demonstrated that the major green tea polyphenol, (-)-epigallocatechin 3-gallate (EGCG), exerts potent neuroprotective actions in the mice model of Parkinson's disease. These studies were extended to neuronal cell culture employing the parkinsonism-inducing neurotoxin, 6-hydroxydopamine (6-OHDA). Pretreatment with EGCG (0.1-10 microm) attenuated human neuroblastoma (NB) SH-SY5Y cell death, induced by a 24-h exposure to 6-OHDA (50 microm). Potential cell signaling candidates involved in this neuroprotective effect were further examined. EGCG restored the reduced protein kinase C (PKC) and extracellular signal-regulated kinases (ERK1/2) activities caused by 6-OHDA toxicity. However, the neuroprotective effect of EGCG on cell survival was abolished by pretreatment with PKC inhibitor GF 109203X (1 microm). Because EGCG increased phosphorylated PKC, we suggest that PKC isoenzymes are involved in the neuroprotective action of EGCG against 6-OHDA. In addition, gene expression analysis revealed that EGCG prevented both the 6-OHDA-induced expression of several mRNAs, such as Bax, Bad, and Mdm2, and the decrease in Bcl-2, Bcl-w, and Bcl-x(L). These results suggest that the neuroprotective mechanism of EGCG against oxidative stress-induced cell death includes stimulation of PKC and modulation of cell survival/cell cycle genes.  相似文献   
772.
We investigated the relative contribution of the queen and workers to colony nestmate recognition cues and on colony insularity in the Carpenter ant Camponotus fellah. Workers were either individually isolated, preventing contact with both queen and workers (colonial deprived, CD), kept in queenless groups, allowing only worker-worker interactions (queen deprived, QD) or in queenright (QR) groups. Two weeks post-separation QD and QR workers were amicable towards each other but both rejected their CD nestmates, which suggests that the queen does not measurably influence the colony recognition cues. By contrast, aggression between QD and QR workers from the same original colony was apparent only after six months of separation. This clearly demonstrates the power of the Gestalt and indicates that the queen is not a dominant contributor to the nestmate recognition cues in this species. Aggression between nestmates was correlated with a greater hydrocarbon (HC) profile divergence for CD than for QD and QR workers, supporting the importance of worker-worker interactions in maintaining the colony Gestalt odour. While the queen does not significantly influence nestmate recognition cues, she does influence colony insularity since within 3 days QD (queenless for six months) workers from different colony origins merged to form a single queenless colony. By contrast, the corresponding QR colonies maintained their territoriality and did not merge. The originally divergent cuticular and postpharyngeal gland HC profiles became congruent following the merger. Therefore, while workers supply and blend the recognition signal, the queen affects worker-worker interaction by reducing social motivation and tolerance of alien conspecifics.  相似文献   
773.
Endothelin-converting enzyme-1 (ECE-1) cleaves big endothelins, as well as bradykinin and beta-amyloid peptide. Several isoforms of ECE-1 (a-d) have been identified to date; they differ only in their NH(2) terminus but share the catalytic domain located in the COOH-terminal end. Using quantitative PCR, we found ECE-1d to be the most abundant type in several endothelial cells (EC) types. In addition to full-length ECE-1 forms we have identified novel, alternatively spliced mRNAs of ECE-1 b-d. These splice variants (SVs) lack exon 3', which codes for the transmembrane region and is present in full-length forms. SVs mRNA were highly expressed in EC derived from macro and microvascular beds but much less so in other, non-endothelial cells expressing ECE-1, which suggests that the splicing mechanism is cell-specific. Analyses of ECE-1d and its SV form in stably transfected HEK-293 cells revealed that both proteins were recognized by anti COOH-terminal ECE-1 antibodies, but anti NH(2)-terminal antibodies only bound ECE-1d. The novel protein, designated ECE-1 sv, has an apparent molecular mass of 75 kDa; by using site-directed mutagenesis its start site was identified in a region common to all ECE-1 forms suggesting that ECE-1 b-d SV mRNAs are translated into the same protein. In agreement with the findings demonstrating common COOH terminus for ECE-1sv and ECE-1d, both exhibited a similar catalytic activity. However, immunofluorescence staining and differential centrifugation revealed a distinct intracellular localization for these two proteins. The presence of ECE-1sv in different cellular compartments than full-length forms of the enzyme may suggest a distinct physiological role for these proteins.  相似文献   
774.
Structural information for mammalian DNA pol-beta combined with molecular and essential dynamics studies have provided atomistically detailed views of functionally important conformational rearrangements that occur during DNA repair and replication. This conformational closing before the chemical reaction is explored in this work as a function of the bound substrate. Anchors for our study are available in crystallographic structures of the DNA pol-beta in "open" (polymerase bound to gapped DNA) and "closed" (polymerase bound to gapped DNA and substrate, dCTP) forms; these different states have long been used to deduce that a large-scale conformational change may help the polymerase choose the correct nucleotide, and hence monitor DNA synthesis fidelity, through an "induced-fit" mechanism. However, the existence of open states with bound substrate and closed states without substrates suggest that substrate-induced conformational closing may be more subtle. Our dynamics simulations of two pol-beta/DNA systems (with/without substrates at the active site) reveal the large-scale closing motions of the thumb and 8-kDa subdomains in the presence of the correct substrate--leading to nearly perfect rearrangement of residues in the active site for the subsequent chemical step of nucleotidyl transfer--in contrast to an opening trend when the substrate is absent, leading to complete disassembly of the active site residues. These studies thus provide in silico evidence for the substrate-induced conformational rearrangements, as widely assumed based on a variety of crystallographic open and closed complexes. Further details gleaned from essential dynamics analyses clarify functionally relevant global motions of the polymerase-beta/DNA complex as required to prepare the system for the chemical reaction of nucleotide extension.  相似文献   
775.
The various motifs of RNA molecules are closely related to their structural and functional properties. To better understand the nature and distributions of such structural motifs (i.e., paired and unpaired bases in stems, junctions, hairpin loops, bulges, and internal loops) and uncover characteristic features, we analyze the large 16S and 23S ribosomal RNAs of Escherichia coli. We find that the paired and unpaired bases in structural motifs have characteristic distribution shapes and ranges; for example, the frequency distribution of paired bases in stems declines linearly with the number of bases, whereas that for unpaired bases in junctions has a pronounced peak. Significantly, our survey reveals that the ratio of total (over the entire molecule) unpaired to paired bases (0.75) and the fraction of bases in stems (0.6), junctions (0.16), hairpin loops (0.12), and bulges/internal loops (0.12) are shared by 16S and 23S ribosomal RNAs, suggesting that natural RNAs may maintain certain proportions of bases in various motifs to ensure structural integrity. These findings may help in the design of novel RNAs and in the search (via constraints) for RNA-coding motifs in genomes, problems of intense current focus.  相似文献   
776.
The linkage between internal ribosomal symmetry and transfer RNA (tRNA) positioning confirmed positional catalysis of amino-acid polymerization. Peptide bonds are formed concurrently with tRNA-3' end rotatory motion, in conjunction with the overall messenger RNA (mRNA)/tRNA translocation. Accurate substrate alignment, mandatory for the processivity of protein biosynthesis, is governed by remote interactions. Inherent flexibility of a conserved nucleotide, anchoring the rotatory motion, facilitates chirality discrimination and antibiotics synergism. Potential tRNA interactions explain the universality of the tRNA CCA-end and P-site preference of initial tRNA. The interactions of protein L2 tail with the symmetry-related region periphery explain its conservation and its contributions to nascent chain elongation.  相似文献   
777.
In mammalian epidermis, alpha6beta4 integrin is expressed exclusively on the basal layer localized to the hemidesmosomes, where it interacts extracellularly with the laminin-5 ligand. During differentiation, loss of alpha6beta4 is associated with keratinocyte detachment from the basement membrane and upward migration. The protein kinase C (PKC) family of isoforms participates in regulation of integrin function and is linked to skin differentiation. Exposure of primary murine keratinocytes to PKC activators specifically downregulates alpha6beta4 expression. Utilizing recombinant adenoviruses, we selectively overexpressed skin PKC isoforms in primary keratinocytes. PKCdelta and PKCzeta induced downregulation of alpha6beta4 protein expression, leading to reduced keratinocyte attachment to laminin-5 and enhanced gradual detachment from the underlying matrix. In contrast, PKCalpha upregulated alpha6beta4 protein expression, leading to increased keratinocyte attachment to laminin-5 and to the underlying matrix. Altogether, these results suggest distinct roles for specific PKC isoforms in alpha6beta4 functional regulation during the early stages of skin differentiation.  相似文献   
778.
A platform for specifically modulating kinase-dependent signaling using peptides derived from the catalytic domain of the kinase is presented. This technology, termed KinAce, utilizes the canonical structure of protein kinases. The targeted regions (subdomain V and subdomains IX and X) are analyzed and their sequence, three-dimensional structure, and involvement in protein-protein interaction are highlighted. Short myristoylated peptides were derived from the target regions of the tyrosine kinases c-Kit and Lyn and the serine/threonine kinases 3-phosphoinositide-dependent kinase-1 (PDK1) and Akt/protein kinase B (PKB). For each kinase an active designer peptide is shown to selectively inhibit the signaling of the kinase from which it is derived, and to inhibit cancer cell proliferation in the micromolar range. This technology emerges as an applicable tool for deriving sequence-based selective inhibitors for a broad range of protein kinases as hits that may be further developed into drugs. Moreover, it enables identification of novel kinase targets for selected therapeutic indications as demonstrated in the KinScreen application.  相似文献   
779.
Chen G  Sagi M  Weining S  Krugman T  Fahima T  Korol AB  Nevo E 《Planta》2004,219(4):684-693
Drought is a major abiotic stress that limits plant growth and crop productivity. A spontaneous wilty mutant (eibi1) hypersensitive to drought was identified from wild barley (Hordeum spontaneum Koch). eibi1 showed the highest relative water loss rate among the known wilty mutants, which indicates that eibi1 is one of the most drought-sensitive mutants. eibi1 had the same abscisic acid (ABA) level, the same ability to accumulate stress-induced ABA, and the same stomatal movement in response to light, dark, drought, and exogenous ABA as the wild type, revealing that eibi1 was neither an ABA-deficient nor an ABA-insensitive mutant. The eibi1 leaves had a larger chlorophyll efflux rate in 80% ethanol than the wild-type leaves; and the transpiration rate of eibi1 was more closely related to chlorophyll efflux rate than to stomatal density, demonstrating that the cuticle of eibi1 was defective. eibi1 will be a promising candidate to study the actual barrier layer in the cuticle that limits water loss of the plant. Exogenous ABA reduced leaf length growth in eibi1 more than in the wild type, implying an interaction on plant growth of ABA signal transduction and the eibi1 product. One may infer that the eibi1 product may reverse the growth inhibition induced by ABA.Abbreviation ABA Abscisic acid  相似文献   
780.
Many cnidarians (e.g., corals, octocorals, sea anemones) maintain a symbiosis with dinoflagellates (zooxanthellae). Zooxanthellae are grouped into clades, with studies focusing on scleractinian corals. We characterized zooxanthellae in 35 species of Caribbean octocorals. Most Caribbean octocoral species (88.6%) hosted clade B zooxanthellae, 8.6% hosted clade C, and one species (2.9%) hosted clades B and C. Erythropodium caribaeorum harbored clade C and a unique RFLP pattern, which, when sequenced, fell within clade C. Five octocoral species displayed no zooxanthella cladal variation with depth. Nine of the ten octocoral species sampled throughout the Caribbean exhibited no regional zooxanthella cladal differences. The exception, Briareum asbestinum, had some colonies from the Dry Tortugas exhibiting the E. caribaeorum RFLP pattern while elsewhere hosting clade B. In the Caribbean, octocorals show more symbiont specificity at the cladal level than scleractinian corals. Both octocorals and scleractinian corals, however, exhibited taxonomic affinity between zooxanthella clade and host suborder.Communicated by R.C. Carpenter  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号