Listeria monocytogenes is a Gram-positive human intracellular pathogen that infects diverse mammalian cells. Upon invasion, L. monocytogenes secretes multiple virulence factors that target host cellular processes and promote infection. It has been presumed, but was not empirically established, that the Sec translocation system is the primary mediator of this secretion. Here, we validate an important role for SecDF, a component of the Sec system, in the secretion of several critical L. monocytogenes virulence factors. A ΔsecDF mutant is demonstrated to exhibit impaired membrane translocation of listeriolysin O (LLO), PlcA, PlcB, and ActA, factors that mediate L. monocytogenes phagosomal escape and spread from cell to cell. This impaired translocation was monitored by accumulation of the factors on the bacterial membrane and by reduced activity upon secretion. This defect in secretion is shown to be associated with a severe intracellular growth defect of the ΔsecDF mutant in macrophages and a less virulent phenotype in mice, despite normal growth in laboratory medium. We further show that SecDF is upregulated when the bacteria reside in macrophage phagosomes and that it is necessary for efficient phagosomal escape. Taken together, these data support the premise that SecDF plays a role as a chaperone that facilitates the translocation of L. monocytogenes virulence factors during infection. 相似文献
Ubiquitin-conjugating enzymes (E2s) have a dominant role in determining which of the seven lysine residues of ubiquitin is used for polyubiquitination. Here we show that tethering of a substrate to an E2 enzyme in the absence of an E3 ubiquitin ligase is sufficient to promote its ubiquitination, whereas the type of the ubiquitin conjugates and the identity of the target lysine on the substrate are promiscuous. In contrast, when an E3 enzyme is introduced, a clear decision between mono- and polyubiquitination is made, and the conjugation type as well as the identity of the target lysine residue on the substrate becomes highly specific. These features of the E3 can be further regulated by auxiliary factors as exemplified by MDMX (Murine Double Minute X). In fact, we show that this interactor reconfigures MDM2-dependent ubiquitination of p53. Based on several model systems, we propose that although interaction with an E2 is sufficient to promote substrate ubiquitination the E3 molds the reaction into a specific, physiologically relevant protein modification. 相似文献
Conceptual models, based on 7 years of data, are constructedto simulate the annual cycle and population dynamics of Microcystisaeruginosa in hypertrophic, warm monomictic Hartbees-poort Dam,South Africa in order to assess the role of hyperscum formation.In Hartbeespoort Dam the large summer planktonic population(mean epilimnion biovolumes of 2050 mm3 I1) andthe low wind speed resulted in the formation of hyperscums (thick,crusted accumulations of floating cyanobacteria at wind-protectedsites) containing up to 50% of the total standing crop for 23months in 4 out of 5 years. In years in which hyperscums formedthe post-maximal summer population maintained itself throughoutautumn and into late winter before declining to the annual nadir(>1000 cells ml1). When hyperscums did not form, orwere artificially removed, the population fell to similarlylow levels as early as May (autumn) and remained small untilthe spring growth phase began. Microcystis cells decompose inthe upper layers of a hyperscum, but this is not a major lossto the planktonic population. Hyperscums are refuges which helpmaintain large planktonic standing crops during winter whengrowth is not possible but have no effect on the long-term (perennial)survival of Microcystis. 相似文献
Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size. 相似文献
Population growth and urbanization lead to increasing water demand, putting significant pressure on natural water sources. The rising amounts of domestic wastewater (WW) in urban areas may be treated to serve as an alternative water source that may alleviate this pressure. This study examines sustainability of utilizing reclaimed domestic wastewater in urban households for toilet flushing and garden irrigation. It models a city characterized by water scarcity, using a coal-based electricity mix.
Methods
Four approaches were compared: (0) Business-as-usual (BAU) alternative, where the central WW treatment plant effluent is discharged to nature; (1) central WW treatment and urban reuse of the effluent produced; (2) semi-distributed greywater treatment and reuse, at cluster scale; (3) Distributed greywater treatment and reuse, at building scale. Environmental life cycle assessment (LCA), social LCA (S-LCA), and life cycle costing (LCC) were applied to the system model of the above scenarios, with seawater desalination as the source for potable water. System boundaries include water supply, WW collection, and treatment facilities. Analytical hierarchy process (AHP), a multi-criteria decision analysis (MCDA) methodology, was integrated into the life cycle sustainability assessment (LCSA) framework as a means for weighting sustainability criteria through judgment elicitation from a panel of 20 experts.
Results and discussion
Environmentally and socially, the two distributed alternatives perform better in most impact categories. Socially, semi-distributed (cluster scale) reuse is somewhat advantageous over the fully distributed alternative (building scale), due to the benefits of community engagement. Economically, the cluster-level scenario is the most preferable, while the building-scale scenario is the least preferable. A hierarchical representation of the problem’s criteria was constructed, according to the principals of AHP. Each criterion was weighted and those of extreme low importance were eliminated, while maintaining the integrity of the experts’ judgments. Weighted and aggregated sustainability scores revealed that cluster level reclamation, under modeled conditions, is the most sustainable option and the BAU scenario is the least sustainable. The other two alternatives, centralized and fully distributed reclamation, obtained similar intermediate scores.
Conclusions
Distributed urban water reuse was found to be more sustainable than current practice. Different alternative solutions are advantageous in different ways, but overall, the reclamation and reuse of greywater at the cluster level seems to be the best option among the three reuse options examined in this assessment. AHP proved an effective method for aggregating the multiple sustainability criteria. The hierarchical view maintains transparency of all local weights while leading to the final weight vector.
Activity-induced structural remodeling of dendritic spines and glial cells was recently proposed as an important factor in neuroplasticity and suggested to accompany the induction of long-term potentiation (LTP). Although T1 and diffusion MRI have been used to study structural changes resulting from long-term training, the cellular basis of the findings obtained and their relationship to neuroplasticity are poorly understood.
Methodology/Principal Finding
Here we used diffusion tensor imaging (DTI) to examine the microstructural manifestations of neuroplasticity in rats that performed a spatial navigation task. We found that DTI can be used to define the selective localization of neuroplasticity induced by different tasks and that this process is age-dependent in cingulate cortex and corpus callosum and age-independent in the dentate gyrus.
Conclusion/Significance
We relate the observed DTI changes to the structural plasticity that occurs in astrocytes and discuss the potential of MRI for probing structural neuroplasticity and hence indirectly localizing LTP. 相似文献
Mutations in the X-linked gene DCX result in lissencephaly in males, and abnormal neuronal positioning in females, suggesting a role for this gene product during neuronal migration. In spite of several known protein interactions, the involvement of DCX in a signaling pathway is still elusive. Here we demonstrate that DCX is a substrate of JNK and interacts with both c-Jun N-terminal kinase (JNK) and JNK interacting protein (JIP). The localization of this signaling module in the developing brain suggests its functionality in migrating neurons. The localization of DCX at neurite tips is determined by its interaction with JIP and by the interaction of the latter with kinesin. DCX is phosphorylated by JNK in growth cones. DCX mutated in sites phosphorylated by JNK affected neurite outgrowth, and the velocity and relative pause time of migrating neurons. We hypothesize that during neuronal migration, there is a need to regulate molecular motors that are working in the cell in opposite directions: kinesin (a plus-end directed molecular motor) versus dynein (a minus-end directed molecular motor). 相似文献
Species distribution models (SDMs) correlate species occurrences with environmental predictors, and can be used to forecast distributions under future climates. SDMs have been criticized for not explicitly including the physiological processes underlying the species response to the environment. Recently, new methods have been suggested to combine SDMs with physiological estimates of performance (physiology-SDMs). In this study, we compare SDM and physiology-SDM predictions for select marine species in the Mediterranean Sea, a region subjected to exceptionally rapid climate change. We focused on six species and created physiology-SDMs that incorporate physiological thermal performance curves from experimental data with species occurrence records. We then contrasted projections of SDMs and physiology-SDMs under future climate (year 2100) for the entire Mediterranean Sea, and particularly the ‘warm’ trailing edge in the Levant region. Across the Mediterranean, we found cross-validation model performance to be similar for regular SDMs and physiology-SDMs. However, we also show that for around half the species the physiology-SDMs substantially outperform regular SDM in the warm Levant. Moreover, for all species the uncertainty associated with the coefficients estimated from the physiology-SDMs were much lower than in the regular SDMs. Under future climate, we find that both SDMs and physiology-SDMs showed similar patterns, with species predicted to shift their distribution north-west in accordance with warming sea temperatures. However, for the physiology-SDMs predicted distributional changes are more moderate than those predicted by regular SDMs. We conclude, that while physiology-SDM predictions generally agree with the regular SDMs, incorporation of the physiological data led to less extreme range shift forecasts. The results suggest that climate-induced range shifts may be less drastic than previously predicted, and thus most species are unlikely to completely disappear with warming climate. Taken together, the findings emphasize that physiological experimental data can provide valuable supplemental information to predict range shifts of marine species. 相似文献