首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   26篇
  2023年   5篇
  2022年   8篇
  2021年   23篇
  2020年   13篇
  2019年   18篇
  2018年   18篇
  2017年   14篇
  2016年   18篇
  2015年   17篇
  2014年   27篇
  2013年   36篇
  2012年   39篇
  2011年   29篇
  2010年   10篇
  2009年   23篇
  2008年   13篇
  2007年   13篇
  2006年   9篇
  2005年   10篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有374条查询结果,搜索用时 31 毫秒
41.
42.
43.
Both monomeric and dimeric constructs of the B domain of protein A from Staphylococcus aureus have been characterized by NMR, CD and fluorescence spectroscopy. The monomeric form of the protein was synthesized using a novel method incorporating the use of a recombinant, folded, chimeric protein. A comparison of the recombinant monomeric form with the commercially available dimeric form indicates that, although the dimer retains the integrity of the three-helix bundle structure present in the monomer, there are interdomain contacts in the dimeric form. A single long-lived water molecule in the hydrophobic core of the three-helix bundle of monomeric protein A may represent an important stabilizing factor for the three-helix bundle topology.  相似文献   
44.
Chronic kidney disease (CKD) is characterized by the gradual loss of renal function and is a major public health concern. Risk factors for CKD include hypertension and proteinuria, both of which are associated with endoplasmic reticulum (ER) stress. ER stress-induced TDAG51 protein expression is increased at an early time point in mice with CKD. Based on these findings, wild-type and TDAG51 knock-out (TDKO) mice were used in an angiotensin II/deoxycorticosterone acetate/salt model of CKD. Both wild-type and TDKO mice developed hypertension, increased proteinuria and albuminuria, glomerular injury, and tubular damage. However, TDKO mice were protected from apoptosis and renal interstitial fibrosis. Human proximal tubular cells were used to demonstrate that TDAG51 expression induces apoptosis through a CHOP-dependent mechanism. Further, a mouse model of intrinsic acute kidney injury demonstrated that CHOP is required for ER stress-mediated apoptosis. Renal fibroblasts were used to demonstrate that TGF-β induces collagen production through an IRE1-dependent mechanism; cells treated with a TGF-β receptor 1 inhibitor prevented XBP1 splicing, a downstream consequence of IRE1 activation. Interestingly, TDKO mice express significantly less TGF-β receptor 1, thus, preventing TGF-β-mediated XBP1 splicing. In conclusion, TDAG51 induces apoptosis in the kidney through a CHOP-dependent mechanism, while contributing to renal interstitial fibrosis through a TGF-β-IRE1-XBP1 pathway.Subject terms: Endoplasmic reticulum, Apoptosis, End-stage renal disease, Preclinical research, Chronic inflammation  相似文献   
45.
46.
In this study the cold tolerance potential of three Vitis vinifera cultivars including ‘Red Sultana’, ‘White Sultana,’ and ‘Flame Seedless’ was evaluated under greenhouse condition. After 15 leaves stage in average, the grapevine plants were subjected to cold stress regimes (4, 0 and ? 4 °C) and compared with control plants (24 °C). A clear increase in leaf electrolyte leakage (EL), thiobarbituric acid reactive substances (TBARS), and H2O2 concentrations was observed with decreasing temperature from 4 to ? 4 °C in all grapevine cultivars. Chilled plants showed marked increases in their abscisic acid (ABA), soluble sugars, and proline contents in compared to control vines. Upon exposure to cold stress, the EL, TBARS, H2O2, and relative water content of ‘Red Sultana’ were found to be lower compared to ‘White Sultana’ and ‘Flame Seedless’. Under 0 °C condition, ‘Red Sultana’ had the highest superoxide dismutase, guaiacol peroxidase and catalase activities, which was approximately twofold higher than those of all other cultivars. Soluble sugars such as glucose, fructose, and sucrose increased from 4 to ? 4 °C. These increments were higher in ‘Red Sultana’ compared to other cultivars which was concomitant with higher accumulation of endogenous ABA concentration in this cultivar. Higher accumulation of ABA and soluble sugars in ‘Red Sultana’ confirmed the key roles of these compounds in cold tolerance which could be applied as a cold tolerance marker for early selection of grapevine cultivars with the aim to establish vineyards in cold winter regions.  相似文献   
47.
The aim of this study is to isolate and identify Lactobacillus plantarum isolates from traditional cheese, Kouzeh, and evaluate their antimicrobial activity against some food pathogens. In total, 56 lactic acid bacteria were isolated by morphological and biochemical methods, 12 of which were identified as Lactobacillus plantarum by biochemical method and 11 were confirmed by molecular method. For analyzing the antimicrobial activity of these isolates properly, diffusion method was performed. The isolates were identified by 318 bp band dedicated for L. plantarum. The isolated L. plantarum represented an inhibitory activity against four of the pathogenic bacteria and showed different inhibition halos against each other. The larger halos were observed against Staphylococcus aureus and Staphylococcus epidermidis (15 ± 0.3 and 14.8 ± 0.7 mm, respectively). The inhibition halo of Escherichia coli was smaller than that of other pathogen and some L. plantarum did not show any inhibitory activity against E. coli, which were resistant to antimicrobial compounds produced by L. plantarum. The isolated L. plantarum isolates with the antimicrobial activity in this study had strong probiotic properties. These results indicated the nutritional value of Kouzeh cheese and usage of the isolated isolates as probiotic strains.  相似文献   
48.
Genome-scale flux analysis of Escherichia coli DH5alpha growth in a complex medium was performed to investigate the relationship between the uptake of various nutrients and their metabolic outcomes. During the exponential growth phase, we observed a sequential consumption order of serine, aspartate and glutamate in the complex medium as well as the complete consumption of key carbohydrate nutrients, glucose and trehalose. Based on the consumption and production rates of the measured metabolites, constraints-based flux analysis of a genome-scale E. coli model was then conducted to elucidate their utilization in the metabolism. The in silico analysis revealed that the cell exploited biosynthetic precursors taken up directly from the complex medium, through growth-related anabolic pathways. This suggests that the cell could be functioning in an energetically more efficient manner by reducing the energy needed to produce amino acids. The in silico simulation also allowed us to explain the observed rapid consumption of serine: excessively consumed external serine from the complex medium was mainly converted into pyruvate and glycine, which in turn, led to the acetate accumulation. The present work demonstrates the application of an in silico modeling approach to characterizing microbial metabolism under complex medium condition. This work further illustrates the use of in silico genome-scale analysis for developing better strategies related to improving microbial growth and enhancing the productivity of desirable metabolites.  相似文献   
49.
50.
SBA-15 and SBA-3 mesoporous silicas are synthesised by P123 and CTAB surfactants via hydrothermal and liquid phase deposition procedures, respectively. An inorganic-organic hybrid mesoporous material is then synthesised by functionalization of SBA-15 with aminopropyl functional groups via grafting method. After characterization, effect of immobilizing support and functional groups on intercalation of phosphomolybdic acid (H3PMo12O40) is taken into consideration. The immobilization pattern is discussed and supported H3PMo12O40 catalysts are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), EDX, inductively coupled plasma (ICP), FT-IR, and UV-vis analysis. The newly synthesised hybrid catalysts are investigated for epoxidation of cyclooctene in presence of hydrogen peroxide as oxidant. The reaction mechanism is discussed. Furthermore, effects of different immobilizing supports and functionalization on catalyst activity, stability, and reusability are taken into consideration. Similar catalytic reactions are carried out with pristine supports and neat H3PMo12O40 (homogeneous). Results reveal that the mesostructured phosphomolybdic acid based catalysts are shown to be efficient and selective heterogeneous catalysts for oxidation of alkenes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号