首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2198篇
  免费   194篇
  国内免费   4篇
  2396篇
  2023年   7篇
  2022年   17篇
  2021年   33篇
  2020年   12篇
  2019年   19篇
  2018年   53篇
  2017年   42篇
  2016年   50篇
  2015年   91篇
  2014年   96篇
  2013年   132篇
  2012年   190篇
  2011年   146篇
  2010年   95篇
  2009年   78篇
  2008年   124篇
  2007年   114篇
  2006年   137篇
  2005年   102篇
  2004年   120篇
  2003年   107篇
  2002年   139篇
  2001年   56篇
  2000年   47篇
  1999年   40篇
  1998年   28篇
  1997年   17篇
  1996年   5篇
  1995年   14篇
  1994年   10篇
  1993年   11篇
  1992年   23篇
  1991年   24篇
  1990年   14篇
  1989年   21篇
  1988年   19篇
  1987年   16篇
  1986年   17篇
  1985年   21篇
  1984年   11篇
  1983年   7篇
  1982年   9篇
  1981年   8篇
  1980年   10篇
  1979年   11篇
  1978年   5篇
  1976年   6篇
  1974年   8篇
  1973年   5篇
  1972年   5篇
排序方式: 共有2396条查询结果,搜索用时 15 毫秒
101.
In this paper we have defined proteome signatures of Bacillus subtilis in response to heat, salt, peroxide, and superoxide stress as well as after starvation for ammonium, tryptophan, glucose, and phosphate using the 2-D gel-based approach. In total, 79 stress-induced and 155 starvation-induced marker proteins were identified including 50% that are not expressed in the vegetative proteome. Fused proteome maps and a color coding approach have been used to define stress-specific regulons that are involved in specific adaptative functions (HrcA for heat, PerR and Fur for oxidative stress, RecA for peroxide, CymR and S-box for superoxide stress). In addition, starvation-specific regulons are defined that are involved in the uptake or utilization of alternative nutrient sources (TnrA, sigmaL/BkdR for ammonium; tryptophan-activated RNA-binding attenuation protein for tryptophan; CcpA, CcpN, sigmaL/AcoR for glucose; PhoPR for phosphate starvation). The general stress or starvation proteome signatures include the CtsR, Spx, sigmaL/RocR, sigmaB, sigmaH, CodY, sigmaF, and sigmaE regulons. Among these, the Spx-dependent oxidase NfrA was induced by all stress conditions indicating stress-induced protein damages. Finally, a subset of sigmaH-dependent proteins (sporulation response regulator, YvyD, YtxH, YisK, YuxI, YpiB) and the CodY-dependent aspartyl phosphatase RapA were defined as general starvation proteins that indicate the transition to stationary phase caused by starvation.  相似文献   
102.
Accumulation of the pathogenesis-related (PR) proteins localised in intercellular spaces of barley primary leaves, chlorophyll content, structure of chloroplasts, and photosynthesis were examined during natural and in vitro induced leaf senescence (cultivation of whole plants in the dark or detached leaves under nutrient deficiency). Some of PR proteins accumulated during natural senescence, but their accumulation pattern was different from those of pathogen-induced as well as during in vitro-induced senescence, which indicate different molecular bases of these processes. Photosynthetic rate and chlorophyll content indicate that natural senescence of barley primary leaves began from 15th day after sowing. In 35-d-old first leaves, the chloroplasts showed typical characteristics of senescence as significant decrease of size, greater grana, and prominent plastoglobuli. The chloroplasts contained more grana under in vitro induced senescence and they had reduced length in the dark. Correspondingly, accumulation of PR proteins was detectable on about the 15th day but the content of some PR proteins increased in later stages of senescence. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
103.
Locally derived growth factors and cytokines in bone play acrucial role in the regulation of bone remodeling, i.e., bone formationand bone resorption processes. We studied the effect of interleukin(IL)-1, tumor necrosis factor (TNF)-, andEscherichia coli lipopolysaccharide(LPS) on the hormone-activatedCa2+ message system in theosteoblastic cell line UMR-106 and in osteoblastic cultures derivedfrom neonatal rat calvariae. In both cell preparations, IL-1,TNF-, and LPS did not alter basal intracellularCa2+ concentration([Ca2+]i)but attenuated Ca2+ transientsevoked by parathyroid hormone (PTH) andPGE2 in a dose (1-100 ng/ml)-and time (8-24 h)-dependent fashion. The cytokines modulatedhormonally induced Ca2+ influx(estimated by using Mn2+ as asurrogate for Ca2+) as well asCa2+ mobilization fromintracellular stores. The latter was linked to suppressed production ofhormonally induced inositol 1,4,5-trisphosphate. The effect ofcytokines on[Ca2+]iwas abolished by the tyrosine kinase inhibitor herbimycin A (50 ng/ml).The cytokine's effect was, however, independent of nitric oxide (NO)production, since NO donors (sodium nitroprusside) as well as permeablecGMP analogs augment, rather than attenuate, hormonally inducedCa2+ transients in osteoblasts.Given the stimulatory role of cytokines on NO production inosteoblasts, the disparate effects of cytokines and NO on theCa2+ signaling pathway may servean autocrine/paracrine mechanism for modulating the effect ofcalciotropic hormones on bone metabolism.

  相似文献   
104.
It has been suggested that DNA methylation plays a crucial role in genomic imprinting and X inactivation. Using DNA methyltransferase 1 (Dnmt1)-deficient mouse embryos carrying X-linked lacZ transgenes, we studied the effects of genomic demethylation on X inactivation. Based on the expression pattern of lacZ, the imprinted X inactivation in the visceral endoderm, a derivative of the extraembryonic lineage, was unaffected in Dnmt1 mutant embryos at the time other imprinted genes showed aberrant expression. Random X inactivation in the embryonic lineage of Dnmt1 mutant embryos, however, was unstable as a result of hypomethylation, causing reactivation of, at least, one lacZ transgene that had initially been repressed. Our results suggest that maintenance of imprinted X inactivation in the extraembryonic lineage can tolerate extensive demethylation while normal levels of methylation are required for stable maintenance of X inactivation in the embryonic lineage.  相似文献   
105.
Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, where wild rice (O. rufipogon) can be found growing in close proximity to cultivated and weedy rice. Using 375 accessions and a combined analysis of 24 neutral SSR loci and two rice domestication genes (sh4, controlling seed shattering, and Bh4, controlling hull colour), we addressed the following questions: (i) What is the relationship of Malaysian weedy rice to domesticated and wild rice, and to weedy rice strains in the USA? (ii) To what extent does the presence of O. rufipogon influence the genetic and phenotypic diversity of Malaysian weeds? (iii) What do the distributions of sh4 and Bh4 alleles and associated phenotypes reveal about the origin and contemporary evolution of Malaysian weedy rice? Our results reveal the following: independent evolutionary origins for Malaysian weeds and US strains, despite their very close phenotypic resemblance; wild‐to‐weed gene flow in Malaysian weed populations, including apparent adaptive introgression of seed‐shattering alleles; and a prominent role for modern Malaysian cultivars in the origin and recent proliferation of Malaysian weeds. These findings suggest that the genetic complexity and adaptability of weedy crop relatives can be profoundly influenced by proximity to reproductively compatible wild and domesticated populations.  相似文献   
106.
Tannins from the leaves of a medicinal mangrove plant, Ceriops tagal, were purified and fractionated on Sephadex LH-20 columns. 13C nuclear magnetic resonance (13C-NMR), reversed/normal high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDT-TOF MS) analysis showed that the tannins were predominantly B-type procyanidins with minor A-type linkages, galloyl and glucosyl substitutions, and a degree of polymerization (DP) up to 33. Thirteen subfractions of the procyanidins were successfully obtained by a modified fractionation method, and their antioxidant activities were investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and ferric reducing antioxidant power (FRAP) method. All these subfractions exhibited potent antioxidant activities, and eleven of them showed significantly different mean DP (mDP) ranging from 1.43±0.04 to 31.77±1.15. Regression analysis demonstrated that antioxidant activities were positively correlative with mDP when around mDP <10, while dropped and then remained at a level similar to mDP = 5 with around 95 µg ml−1 for DPPH scavenging activity and 4 mmol AAE g−1 for FRAP value.  相似文献   
107.
Mutations in genes regulating cell cycle and apoptosis are considered major culprits for the malignant transformation of cancer cells. Aberrant activation of the Hedgehog (HH) signaling pathway which primarily regulates genes involved in cell growth, proliferation, survival and apoptosis has been demonstrated in multiple myeloma. Mutations resulting in defective components of the p53 pathway, which serves a critical role in mediating cellular stress response by triggering DNA repair, cell cycle arrest, senescence and apoptosis, have also been identified. This study focuses on detecting copy number variations for the GLIPR1/GLIPR1L1/GLIPR1L2 gene cluster of the p53 pathway and three elements of the HH pathway, SHH, PTCH1 and GLI3 in multiple myeloma (MM) using fluorescence in situ hybridization (FISH). In eighteen samples, there was no evidence of abnormal copy number for PTCH1, GLI3 or SHH. Thus, it is unlikely that copy number variations of these genes are linked to multiple myeloma. However, a deletion of the GLIPR1/GLIPR1L1/ GLIPR1L2 gene cluster, all p53 targets, was found in three of 32 samples (9.4%) indicating that these deleted genes may have significant implications in MM. Further studies should be performed to determine the role of the GLIPR1/GLIPR1L1/GLIPR1L2 gene cluster in the pathogenesis of multiple myeloma.  相似文献   
108.
The complex sterol mixture isolated from A, nigra was found to contain a low level of Δ4-3-keto steroids, 5β-stanols and 4α-methyl sterols in addition to regular (4-demethyl) sterols. The following new marine sterols were isolated and identified using MS and 360 MHz NMR: 5β-cholest-22E-en-3β-ol, 24S-methyl-5β-cholest-22E-en-3β-ol, 24-methylene-5β-cholestan-3β-ol, both epimers at C-24 of 4α-methyl-24-ethyl-5α-cholest-22E-en-3β-ol, 4α, 22ξ, 23ξ-(or 24ξ-)trimethyl-5α-cholest-8(14)-en-3β-ol and (22S, 23S, 24S)-4α-24-dimethyl-22, 23-methylene-5α-cholestan-3β-ol. The latter sterol and 23-demethylgorqosterol have opposite configurations at C-22, C-23, and C-24; the Δ8(14) sterol has an unprecedented side chain.  相似文献   
109.
The ATP-binding cassette (ABC) transporter ABCG2 plays an important role in tissue detoxification and confers multidrug resistance to cancer cells. Identification of expressional and functional cellular regulators of this multidrug transporter is therefore intensively pursued. The PI3-kinase/Akt signaling axis has been implicated as a key element in regulating various cellular functions, including the expression and plasma membrane localization of ABCG2. Here we demonstrate that besides inhibiting their respective target kinases, the pharmacological PI3-kinase inhibitor LY294002 and the downstream mTOR kinase inhibitor rapamycin also directly inhibit ABCG2 function. In contrast, wortmannin, another commonly used pharmacological inhibitor of PI3-kinase does not interact with the transporter. We suggest that direct functional modulation of ABCG2 should be taken into consideration when pharmacological agents are applied to dissect the specific role of PI3-kinase/Akt/mTOR signaling in cellular functions.  相似文献   
110.
Understanding the relative contributions of intrinsic and extrinsic factors to population structure and genetic diversity is a central goal of conservation and evolutionary genetics. One way to achieve this is through comparative population genetic analysis of sympatric sister taxa, which allows evaluation of intrinsic factors such as population demography and life history while controlling for phylogenetic relatedness and geography. We used ten conserved microsatellites to explore the population structure and genetic diversity of three sympatric and closely related plover species in southwestern Madagascar: Kittlitz's plover (Charadrius pecuarius), white‐fronted plover (C. marginatus), and Madagascar plover (C. thoracicus). Bayesian clustering revealed strong population structure in the rare and endemic Madagascar plover, intermediate population structure in the white‐fronted plover, and no detectable population structure in the geographically widespread Kittlitz's plover. In contrast, allelic richness and heterozygosity were highest for the Kittlitz's plover, intermediate for the white‐fronted plover and lowest for the Madagascar plover. No evidence was found in support of the “watershed mechanism” proposed to facilitate vicariant divergence of Madagascan lemurs and reptiles, which we attribute to the vagility of birds. However, we found a significant pattern of genetic isolation by distance among populations of the Madagascar plover, but not for the other two species. These findings suggest that interspecific variation in rarity, endemism, and dispersal propensity may influence genetic structure and diversity, even in highly vagile species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号