首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1292篇
  免费   99篇
  2024年   3篇
  2023年   14篇
  2022年   19篇
  2021年   54篇
  2020年   25篇
  2019年   32篇
  2018年   38篇
  2017年   26篇
  2016年   39篇
  2015年   81篇
  2014年   67篇
  2013年   96篇
  2012年   111篇
  2011年   120篇
  2010年   65篇
  2009年   74篇
  2008年   91篇
  2007年   75篇
  2006年   71篇
  2005年   58篇
  2004年   50篇
  2003年   44篇
  2002年   35篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   11篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   6篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1979年   3篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1969年   2篇
  1967年   1篇
  1962年   1篇
  1960年   1篇
排序方式: 共有1391条查询结果,搜索用时 15 毫秒
21.
Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double‐knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor.  相似文献   
22.
Local adaptation patterns have been found in many plants and animals, highlighting the genetic heterogeneity of species along their range of distribution. In the next decades, global warming is predicted to induce a change in the selective pressures that drive this adaptive variation, forcing a reshuffling of the underlying adaptive allele distributions. For species with low dispersion capacity and long generation time such as trees, the rapidity of the change could impede the migration of beneficial alleles and lower their capacity to track the changing environment. Identifying the main selective pressures driving the adaptive genetic variation is thus necessary when investigating species capacity to respond to global warming. In this study, we investigate the adaptive landscape of Fagus sylvatica along a gradient of populations in the French Alps. Using a double‐digest restriction‐site‐associated DNA (ddRAD) sequencing approach, we identified 7,000 SNPs from 570 individuals across 36 different sites. A redundancy analysis (RDA)‐derived method allowed us to identify several SNPs that were strongly associated with climatic gradients; moreover, we defined the primary selective gradients along the natural populations of F. sylvatica in the Alps. Strong effects of elevation and humidity, which contrast north‐western and south‐eastern site, were found and were believed to be important drivers of genetic adaptation. Finally, simulations of future genetic landscapes that used these findings allowed identifying populations at risk for F. sylvatica in the Alps, which could be helpful for future management plans.  相似文献   
23.
In eukaryotes, posttranslational modification by ubiquitin regulates the activity and stability of many proteins and thus influences a variety of developmental processes as well as environmental responses. Ubiquitination also plays a critical role in intracellular trafficking by serving as a signal for endocytosis. We have previously shown that the Arabidopsis thaliana ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF STAM3 (AMSH3) is a deubiquitinating enzyme (DUB) that interacts with ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT-III (ESCRT-III) and is essential for intracellular transport and vacuole biogenesis. However, physiological functions of AMSH3 in the context of its ESCRT-III interaction are not well understood due to the severe seedling lethal phenotype of its null mutant. In this article, we show that Arabidopsis AMSH1, an AMSH3-related DUB, interacts with the ESCRT-III subunit VACUOLAR PROTEIN SORTING2.1 (VPS2.1) and that impairment of both AMSH1 and VPS2.1 causes early senescence and hypersensitivity to artificial carbon starvation in the dark similar to previously reported autophagy mutants. Consistent with this, both mutants accumulate autophagosome markers and accumulate less autophagic bodies in the vacuole. Taken together, our results demonstrate that AMSH1 and the ESCRT-III-subunit VPS2.1 are important for autophagic degradation and autophagy-mediated physiological processes.  相似文献   
24.
Synthesis and evaluation of new combretastatin analogues with varied modifications on the bridge and the aromatic rings, have shown that the 2-naphthyl moiety is a good surrogate for the 3-hydroxy-4-methoxyphenyl (B-ring) of combretastatin A-4. Other bicyclic systems, such as 6(7)-quinolyl and 5-indolyl, can replace the B-ring, but they produce less potent analogues in the cytotoxicity and tubulin polymerization inhibition assays. Other modifications are detrimentral for the potency of the studied analogues. The 2-naphthyl combretastatin 53 and the related 6-quinolyl combretastatin 106 analogues are the most potent among the derivatives of this type, whereas 92 and 95 are the most potent among the naphthalene derivatives with a heterocycle in the bridge. Previous and new results in this family of combretastatin analogues are discussed.  相似文献   
25.
Membrane trafficking is vital to plant development and adaptation to the environment. It is suggested that post‐Golgi vesicles and multivesicular bodies are essential for plant defence against directly penetrating fungal parasites at the cell wall. However, the actual plant proteins involved in membrane transport for defence are largely unidentified. We applied a candidate gene approach and single cell transient‐induced gene silencing for the identification of membrane trafficking proteins of barley involved in the response to the fungal pathogen Blumeria graminis f.sp. hordei. This revealed potential components of vesicle tethering complexes [putative exocyst subunit HvEXO70F‐like and subunits of the conserved oligomeric Golgi (COG) complex] and Golgi membrane trafficking (COPIγ coatomer and HvYPT1‐like RAB GTPase) as essential for resistance to fungal penetration into the host cell.  相似文献   
26.
27.
The Notch signaling pathway controls a large number of processes during animal development and adult homeostasis. One of the conserved post-translational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a C-X-S-X-(P/A)-C motif by Protein O-glucosyltransferase 1 (POGLUT1; Rumi in Drosophila). Genetic experiments in flies and mice, and in vivo structure-function analysis in flies indicate that O-glucose residues promote Notch signaling. The O-glucose residues on mammalian Notch1 and Notch2 proteins are efficiently extended by the addition of one or two xylose residues through the function of specific mammalian xylosyltransferases. However, the contribution of xylosylation to Notch signaling is not known. Here, we identify the Drosophila enzyme Shams responsible for the addition of xylose to O-glucose on EGF repeats. Surprisingly, loss- and gain-of-function experiments strongly suggest that xylose negatively regulates Notch signaling, opposite to the role played by glucose residues. Mass spectrometric analysis of Drosophila Notch indicates that addition of xylose to O-glucosylated Notch EGF repeats is limited to EGF14–20. A Notch transgene with mutations in the O-glucosylation sites of Notch EGF16–20 recapitulates the shams loss-of-function phenotypes, and suppresses the phenotypes caused by the overexpression of human xylosyltransferases. Antibody staining in animals with decreased Notch xylosylation indicates that xylose residues on EGF16–20 negatively regulate the surface expression of the Notch receptor. Our studies uncover a specific role for xylose in the regulation of the Drosophila Notch signaling, and suggest a previously unrecognized regulatory role for EGF16–20 of Notch.  相似文献   
28.

Background

Changes in fibronectin (Fn) matrix remodeling contribute to mammary tumor angiogenesis and are related to altered behavior of adipogenic stromal cells; yet, the underlying mechanisms remain unclear due in part to a lack of reductionist model systems that allow the inherent complexity of cell-derived extracellular matrices (ECMs) to be deciphered. In particular, breast cancer-associated adipogenic stromal cells not only enhance the composition, quantity, and rigidity of deposited Fn, but also partially unfold these matrices. However, the specific effect of Fn conformation on tumor angiogenesis is undefined.

Methods

Decellularized matrices and a conducting polymer device consisting of poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) were used to examine the effect of Fn conformation on the behavior of 3T3-L1 preadipocytes. Changes in cell adhesion and proangiogenic capability were tested via cell counting and by quantification of vascular endothelial growth factor (VEGF) secretion, respectively. Integrin-blocking antibodies were utilized to examine varied integrin specificity as a potential mechanism.

Results

Our findings suggest that tumor-associated partial unfolding of Fn decreases adhesion while enhancing VEGF secretion by breast cancer-associated adipogenic precursor cells, and that altered integrin specificity may underlie these changes.

Conclusions and general significance

These results not only have important implications for our understanding of tumorigenesis, but also enhance knowledge of cell-ECM interactions that may be harnessed for other applications including advanced tissue engineering approaches. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号