首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   16篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   7篇
  2007年   2篇
  2006年   9篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   8篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
  1952年   1篇
排序方式: 共有136条查询结果,搜索用时 734 毫秒
11.
Genetic dissection of the lipid bilayer composition provides essential in vivo evidence for the role of individual lipid species in membrane function. To understand the in vivo role of the anionic phospholipid, phosphatidylglycerol, the loss-of-function mutation was identified and characterized in the Arabidopsis thaliana gene coding for phosphatidylglycerophosphate synthase 1, PGP1. This mutation resulted in pigment-deficient plants of the xantha type in which the biogenesis of thylakoid membranes was severely compromised. The PGP1 gene coded for a precursor polypeptide that was targeted in vivo to both plastids and mitochondria. The activity of the plastidial PGP1 isoform was essential for the biosynthesis of phosphatidylglycerol in chloroplasts, whereas the mitochondrial PGP1 isoform was redundant for the accumulation of phosphatidylglycerol and its derivative cardiolipin in plant mitochondrial membranes. Together with findings in cyanobacteria, these data demonstrated that anionic phospholipids play an important, evolutionarily conserved role in the biogenesis and function of the photosynthetic machinery. In addition, mutant analysis suggested that in higher plants, mitochondria, unlike plastids, could import phosphatidylglycerol from the endoplasmic reticulum.  相似文献   
12.
Genetic variability and genetic differentiation in two Ovis species--domesticated (Askanian sheep, Sokilska and Kulunda sheep) and wild (bighorn sheep) were analyzed using different types of molecular-genetic markers--genetic-biochemical (30 loci) and DNA (ISSR-PCR) ones. High level of genetic variability was revealed. The average heterozygosity of biochemical markers loci was in range of 0.073-0.188. Markers involved into process of genofond divergence of two closely related species were revealed.  相似文献   
13.
14.
The life and death of T cells is controlled to a large extent by the relative amounts of Bcl-2-related proteins they contain. The antiapoptotic protein Bcl-2 and the proapoptotic protein Bim are particularly important in this process with the amount of Bcl-2 per cell dropping by about one-half when T cells prepare to die. In this study we show that Bcl-2 and Bim each control the expression of the other. Absence of Bim leads to a drop in the amount of intracellular Bcl-2 protein, while having no effect on the amounts of mRNA for Bcl-2. Conversely, high amounts of Bcl-2 per cell allow high amounts of Bim, although in this case the effect involves increases in Bim mRNA. These mutual effects occur even if Bcl-2 is induced acutely. Thus these two proteins control the expression of the other, at either the protein or mRNA level.  相似文献   
15.
16.
17.
The EEG spectral-coherence parameters were analyzed in 10 healthy individuals (mean age, 22 ± 0.67 years) at different steps of verticalization, from the lying position to the sitting and standing positions. The maximal changes in all EEG parameters were revealed when the upright posture was maintained in the absence of visual control. Under these conditions, a power increase for the fast EEG components (the ??- and ??-bands) was observed, as was an additional increase when the conditions of maintaining the upright posture were complicated. According to the results of the EEG??s coherent analysis, human verticalization revealed a specific increase for most of the EEG rhythm ranges in the right hemisphere, especially in the frontocentral and occipitoparietal regions, as well as for the interhemispheric coherences for these leads reflecting the involvement of both cortical and subcortical structures in these processes. When the posture maintenance conditions were complicated, an additional coherence increase in the fast EEG bands (the ??-rhythm) was observed in the frontal cortical regions, which was evidence of the increase in the executive functions under these conditions.  相似文献   
18.
19.
Activity-dependent neuroprotective protein (ADNP) 2 (KIAA0863; ZNF508) gene, a homeobox-profile containing gene, was identified in a screen for homologous proteins to ADNP. The human ADNP2 contains 1131 amino acid residues with a molecular weight of 122.8 KDa. In silico analysis indicated that ortholgs to ADNP2 exist in different phyla, suggesting that ADNP2 might be evolutionary conserved. Here, we began to explore the molecular and functional characterization of ADNP2. Results showed that the mouse ADNP2 mRNA is ubiquitously expressed in distinct normal tissues with increased expression in the brain, particularly in the cerebral cortex. During development, a relatively high level of ADNP2 gene expression was found in the embryonic mouse brain and was sustained throughout embryogenesis and adulthood. An increase in the mRNA was detected in differentiated P19 neuronal/glial-like cells as compared with the non-differentiated cells. To gain insight into ADNP2 function, ADNP2-deficient cell lines were established by the RNA silencing (small interfering RNA) technology. ADNP2 deficiency significantly changed the toxicity induced by hydrogen peroxide in P19 embryonic carcinoma cells, similar to what would be predicted for ADNP deficiency. These findings represent an initial characterization of ADNP2 and suggest that this gene product may have an important function in brain by playing a role in cellular survival pathways.  相似文献   
20.
Brain activity is continuously modulated, even at “rest”. The alpha rhythm (8–12 Hz) has been known as the hallmark of the brain''s idle-state. However, it is still debated if the alpha rhythm reflects synchronization in a distributed network or focal generator and whether it occurs spontaneously or is driven by a stimulus. This EEG/fMRI study aimed to explore the source of alpha modulations and their distribution in the resting brain. By serendipity, while computing the individually defined power modulations of the alpha-band, two simultaneously occurring components of these modulations were found. An ‘induced alpha’ that was correlated with the paradigm (eyes open/ eyes closed), and a ‘spontaneous alpha’ that was on-going and unrelated to the paradigm. These alpha components when used as regressors for BOLD activation revealed two segregated activation maps: the ‘induced map’ included left lateral temporal cortical regions and the hippocampus; the ‘spontaneous map’ included prefrontal cortical regions and the thalamus. Our combined fMRI/EEG approach allowed to computationally untangle two parallel patterns of alpha modulations and underpin their anatomical basis in the human brain. These findings suggest that the human alpha rhythm represents at least two simultaneously occurring processes which characterize the ‘resting brain’; one is related to expected change in sensory information, while the other is endogenous and independent of stimulus change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号