首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   8篇
  121篇
  2022年   7篇
  2021年   7篇
  2020年   3篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   12篇
  2014年   11篇
  2013年   8篇
  2012年   23篇
  2011年   8篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2002年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
31.
We first record Carcinops troglodytes (Paykull) as a predator of Alphitobius diaperinus (Panzer) larvae in poultry houses in North and Northwest regions of the state of Paraná. Carcinops spp. are commonly recorded as predators of dipterans, and this record in poultry houses indicates the possibility of exploiting such predator for future studies aiming the development of management strategies for A. diaperinus.  相似文献   
32.
The CTLH complex is a large, highly conserved eukaryotic complex composed of eight proteins that has been associated to several cellular functions, more often described as an E3 ubiquitin ligase complex involved in protein degradation through ubiquitination but also via vacuole-dependent degradation. A common feature observed in several components of this complex is the presence of the domains lissencephaly-1 homology (LisH) and C-terminal to LisH (CTLH). The LisH domain is found in several proteins involved in chromosome segregation, microtubule dynamics, and cell migration. Also, this domain participates in protein dimerization, besides affecting protein half-life, and influencing in specific cellular localization. Among the proteins found in the CTLH complex, Twa1 (Two-hybrid-associated protein 1 with RanBPM), also known as Gid8 (glucose-induced degradation protein 8 homolog) is the smallest, being a good model for structural studies by NMR. In this work we report the chemical shift assignments of the homodimeric LisH domain of Twa1, as a first step to determine its solution structure.  相似文献   
33.
34.
Lithium (Li)-treated patients often develop urinary concentrating defect and polyuria, a condition known as nephrogenic diabetes insipidus (NDI). In a rat model of Li-induced NDI, we studied the effect that sildenafil (Sil), a phosphodiesterase 5 (PDE5) inhibitor, has on renal expression of aquaporin-2 (AQP2), urea transporter UT-A1, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), epithelial Na channel (ENaC; α-, β-, and γ-subunits), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase. We also evaluated cGMP levels in medullary collecting duct cells in suspension. For 4 wk, Wistar rats received Li (40 mmol/kg food) or no treatment (control), some receiving, in weeks 2-4, Sil (200 mg/kg food) or Li and Sil (Li+Sil). In Li+Sil rats, urine output and free water clearance were markedly lower, whereas urinary osmolality was higher, than in Li rats. The cGMP levels in the suspensions of medullary collecting duct cells were markedly higher in the Li+Sil and Sil groups than in the control and Li groups. Semiquantitative immunoblotting revealed the following: in Li+Sil rats, AQP2 expression was partially normalized, whereas that of UT-A1, γ-ENaC, and eNOS was completely normalized; and expression of NKCC2 and NHE3 was significantly higher in Li rats than in controls. Inulin clearance was normal in all groups. Mean arterial pressure and plasma arginine vasopressin did not differ among the groups. Sil completely reversed the Li-induced increase in renal vascular resistance. We conclude that, in experimental Li-induced NDI, Sil reduces polyuria, increases urinary osmolality, and decreases free water clearance via upregulation of renal AQP2 and UT-A1.  相似文献   
35.

Background

While CD40L is typically a membrane glycoprotein expressed on activated T cells and platelets that binds and activates CD40 on the surface on antigen presenting cells, a soluble derivative (sCD40L) that appears to retain its biological activity after cleavage from cell membrane also exists. We recently reported that sCD40L is associated with clinical resolution of visceral leishmaniasis and protection against the disease. In the present study we investigated if this sCD40L is functional and exerts anti-parasitic effect in L. infantum-infected macrophages.

Methodology/Principal Findings

Macrophages from normal human donors were infected with L. infantum promastigotes and incubated with either sera from subjects exposed to L. infantum infection, monoclonal antibodies against human CD40L, or an isotype control antibody. We then evaluated infection by counting the number of infected cells and the number of parasites in each cell. We also measured a variety of immune modulatory cytokines in these macrophage culture supernatants by Luminex assay. The addition of sCD40L, either recombinant or from infected individuals’ serum, decreased both the number of infected macrophages and number of intracellular parasites. Moreover, this treatment increased the production of IL-12, IL-23, IL-27, IL-15, and IL1β such that negative correlations between the levels of these cytokines with both the infection ratio and number of intracellular parasites were observed.

Conclusions/Significance

sCD40L from sera of subjects exposed to L. infantum is functional and improves both the control of parasite and production of inflamatory cytokines of infected macrophages. Although the mechanisms involved in parasite killing are still unclear and require further exploration, these findings indicate a protective role of sCD40L in visceral leishmaniasis.  相似文献   
36.
The clinical impact of rhinovirus C (RV-C) is well-documented; yet, the viral life cycle remains poorly defined. Thus, we characterized RV-C15 replication at the single-cell level and its impact on the human airway epithelium (HAE) using a physiologically-relevant in vitro model. RV-C15 replication was restricted to ciliated cells where viral RNA levels peaked at 12 hours post-infection (hpi), correlating with elevated titers in the apical compartment at 24hpi. Notably, infection was associated with a loss of polarized expression of the RV-C receptor, cadherin-related family member 3. Visualization of double-stranded RNA (dsRNA) during RV-C15 replication revealed two distinct replication complex arrangements within the cell, likely corresponding to different time points in infection. To further define RV-C15 replication sites, we analyzed the expression and colocalization of giantin, phosphatidylinositol-4-phosphate, and calnexin with dsRNA. Despite observing Golgi fragmentation by immunofluorescence during RV-C15 infection as previously reported for other RVs, a high ratio of calnexin-dsRNA colocalization implicated the endoplasmic reticulum as the primary site for RV-C15 replication in HAE. RV-C15 infection was also associated with elevated stimulator of interferon genes (STING) expression and the induction of incomplete autophagy, a mechanism used by other RVs to facilitate non-lytic release of progeny virions. Notably, genetic depletion of STING in HAE attenuated RV-C15 and -A16 (but not -B14) replication, corroborating a previously proposed proviral role for STING in some RV infections. Finally, RV-C15 infection resulted in a temporary loss in epithelial barrier integrity and the translocation of tight junction proteins while a reduction in mucociliary clearance indicated cytopathic effects on epithelial function. Together, our findings identify both shared and unique features of RV-C replication compared to related rhinoviruses and define the impact of RV-C on both epithelial cell organization and tissue functionality–aspects of infection that may contribute to pathogenesis in vivo.  相似文献   
37.
The voltage-dependent anion channel 1 (VDAC1) was first described as a mitochondrial porin that mediates the flux of metabolites and ions, thereby integrating both cell survival and death signals. In the nervous system, the functional roles of VDAC1 remain poorly understood. Herein, the rat retina was employed to study VDAC1. First, it was observed that even subtle changes in VDAC1 levels affect neuronal survival, inducing severe alterations in the retinal morphology. We next examined the regulation of VDAC1 after traumatic retinal injury. After mechanical trauma, SOD1 translocates towards the nucleus, which is insufficient to contain the consequences of oxidative stress, as determined by the evaluation of protein carbonylation. Using in vitro models of oxidative stress and mechanical injury in primary retinal cell cultures, it was possible to determine that inhibition of VDAC1 oligomerization by 4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS) rescues cell viability, impacting microglial cell activation. We next focused on the regulation of VDAC1 after retinal mechanical injury. VDAC1 was promptly upregulated 2 h after lesion in the plasma membrane and endoplasmic reticulum rather than in the mitochondria, and multimers of VDAC1 were assembled after lesion. DIDS intraocular application decreased apoptosis and prevented microglial polarization, which confirmed in vitro observations. Considering the role of microglia in neuroinflammation, multiplex evaluation of cytokines showed that DIDS application disorganized the inflammatory response 2 h after the lesion, matching the fast regulation of VDAC1. Taken together, data disclosed that fine regulation of VDAC1 influences neuronal survival, and pharmacological inhibition after trauma injury has neuroprotective effects. This protection may be attributed to the effects on VDAC1 abnormal accumulation in the plasma membrane, thereby controlling the activation of microglial cells. We concluded that VDAC1 is a putative therapeutic target in neuronal disorders since it integrates both death and survival cellular signaling.Subject terms: Cell death in the nervous system, Cellular neuroscience  相似文献   
38.
Enalapril maleate (EM) is a widely used anti-hypertensive drug which is unstable when mixed with excipients. Enalaprilate and diketopiperazine (DPK) are the main degradation products of enalapril. The in situ preparation of enalapril sodium salt (NaE) has been used to improve drug stability in dosage forms; however, gas release and product rejection ensue when the chemical reaction for obtaining the sodium salt is not completely finished before packaging. This study evaluated the effect of stearic acid (SA) on enalapril stability in microcrystalline cellulose (MCC) pellets containing EM or NaE. MCC pellets containing SA were prepared by the extrusion–spheronization technique and characterized. Enalapril stability and dissolution were then evaluated. DPK and enalaprilate formation were reduced by the addition of SA in pellets containing EM. The overall enalapril degradation in these formulations was lower when compared with pellets containing EM or even NaE prepared without SA. The immediate-release characteristic was maintained by the addition of 5% crospovidone to all the formulations tested. The incorporation of SA into NaE pellets resulted in unexpected enalapril degradation, caused by the interaction of these compounds, as suggested by a thermal analysis of the SA–NaE binary mixture. The findings presented here showed that formulations containing SA could substitute the formation of NaE, since they provide better enalapril stability in solid dosage forms. In addition, it is suggested that the stabilization effects would be observed for other N-carboxyalkyl dipeptide analogs with angiotensin converting enzyme inhibition activity, since these new entities share the same degradation pathway of enalapril.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号