首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   13篇
  191篇
  2024年   1篇
  2022年   2篇
  2021年   8篇
  2020年   5篇
  2019年   4篇
  2018年   11篇
  2017年   2篇
  2016年   9篇
  2015年   7篇
  2014年   9篇
  2013年   13篇
  2012年   23篇
  2011年   14篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   10篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   13篇
  2002年   8篇
  2001年   4篇
  2000年   1篇
  1997年   1篇
  1995年   2篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
81.
Global changes can interact to affect photosynthesis and thus ecosystem carbon capture, yet few multi-factor field studies exist to examine such interactions. Here, we evaluate leaf gas exchange responses of five perennial grassland species from four functional groups to individual and interactive global changes in an open-air experiment in Minnesota, USA, including elevated CO2 (eCO2), warming, reduced rainfall and increased soil nitrogen supply. All four factors influenced leaf net photosynthesis and/or stomatal conductance, but almost all effects were context-dependent, i.e. they differed among species, varied with levels of other treatments and/or depended on environmental conditions. Firstly, the response of photosynthesis to eCO2 depended on species and nitrogen, became more positive as vapour pressure deficit increased and, for a C4 grass and a legume, was more positive under reduced rainfall. Secondly, reduced rainfall increased photosynthesis in three functionally distinct species, potentially via acclimation to low soil moisture. Thirdly, warming had positive, neutral or negative effects on photosynthesis depending on species and rainfall. Overall, our results show that interactions among global changes and environmental conditions may complicate predictions based on simple theoretical expectations of main effects, and that the factors and interactions influencing photosynthesis vary among herbaceous species.  相似文献   
82.
Rose AB  Elfersi T  Parra G  Korf I 《The Plant cell》2008,20(3):543-551
Introns that elevate mRNA accumulation have been found in a wide range of eukaryotes. However, not all introns affect gene expression, and direct testing is currently the only way to identify stimulatory introns. Our genome-wide analysis in Arabidopsis thaliana revealed that promoter-proximal introns as a group are compositionally distinct from distal introns and that the degree to which an individual intron matches the promoter-proximal intron profile is a strong predictor of its ability to increase expression. We found that the sequences responsible for elevating expression are dispersed throughout an enhancing intron, as is a candidate motif that is overrepresented in first introns and whose occurrence in tested introns is proportional to its effect on expression. The signals responsible for intron-mediated enhancement are apparently conserved between Arabidopsis and rice (Oryza sativa) despite the large evolutionary distance separating these plants.  相似文献   
83.
84.
The mechanism of action of pro-apoptotic proteins is difficult to study in vivo because of their death effect, which makes it problematic to obtain sufficient homogeneous experimental material for biochemical analysis. We show here that pro-apoptotic genes expressed in Xenopus oocytes constitute a useful in vivo system for studying their mechanism of action. In the present study, we used this system to study the death effects of Bcl-x(S), a pro-apoptotic member of the Bcl-2 family. The results showed that expression of Bcl-x(S) in oocytes induces oocyte death by a caspase-dependent mechanism, which includes BH3-dependent cytochrome c release and is inhibited by co-expression of the anti-apoptotic proteins Bcl-2 and Bcl-x(L). The release of cytochrome c was found to be dependent on caspase activity. Bcl-x(S) was localized mainly in the mitochondria, and Bcl-x(S) transmembrane and BH3 domains were required for its apoptotic effect. These findings suggest that Bcl-x(S) induces apoptosis in Xenopus oocytes mainly by its presence in the mitochondria, where it induces BH3- and caspase-dependent release of cytochrome c, which leads to oocyte death.  相似文献   
85.
Two subspecies of Orchis ustulata differ considerably in their flowering time, but in only a few morphometric parameters; this makes the rank of these taxa problematic. The flowering time was not affected by replanting individuals to another habitat, including to the habitat of the other subspecies. In this study, populations from both subspecies were studied, measuring 464 marked genets during 5–6 years. Populations with different flowering times exhibited notable differences in their local distribution areas and the mean height of specimens. In the late-flowering populations the proportion of dormant plants is higher and the proportion of vegetatively propagated shoots lower than in the early-flowering ones. Going to (or staying) dormant is the biggest possibility in all stage groups. Flowering is more likely to be followed by dormancy than vegetative stage, but setting fruit does not affect the possibility. Vegetative propagation may play an important role in keeping the populations viable. Vegetative growth is more pronounced on stony soils.  相似文献   
86.
87.
The glycosylation of recombinant β-glucocerebrosidase, and in particular the exposure of mannose residues, has been shown to be a key factor in the success of ERT (enzyme replacement therapy) for the treatment of GD (Gaucher disease). Macrophages, the target cells in GD, internalize β-glucocerebrosidase through MRs (mannose receptors). Three enzymes are commercially available for the treatment of GD by ERT. Taliglucerase alfa, imiglucerase and velaglucerase alfa are each produced in different cell systems and undergo various post-translational or post-production glycosylation modifications to expose their mannose residues. This is the first study in which the glycosylation profiles of the three enzymes are compared, using the same methodology and the effect on functionality and cellular uptake is evaluated. While the major differences in glycosylation profiles reside in the variation of terminal residues and mannose chain length, the enzymatic activity and stability are not affected by these differences. Furthermore, the cellular uptake and in-cell stability in rat and human macrophages are similar. Finally, in vivo studies to evaluate the uptake into target organs also show similar results for all three enzymes. These results indicate that the variations of glycosylation between the three regulatory-approved β-glucocerebrosidase enzymes have no effect on their function or distribution.  相似文献   
88.
89.
Anthropogenic habitat alteration can have a dramatic effect on the spatial distribution and ranging patterns of primates. We characterized the spatial ecology of a free-living troop of chacma baboons (Papio ursinus) in a human-modified environment in the Cape Peninsula, South Africa. We used GPS and behavioral observations collected over 1 yr to quantify the troop’s home range size, habitat selection, choice of sleeping site, and foraging patterns. The troop comprised 115 individuals living in a home range of 9.50 km2, giving a density of 12.1 baboons/km2. Area use correlates positively with exotic vegetation and negatively with indigenous vegetation and altitude. The troop spent significantly more time in low-lying human-modified environments, i.e., plantations, vineyards, and urban habitat, than in indigenous vegetation that was largely restricted to steeper slopes at higher elevations. The troop slept exclusively in exotic trees, 94% of which were located in the plantation, 3% in urban habitat, and 3% in vineyards. The most consumed food items were exotic grasses, subterranean food items, and exotic pine nuts. The survival and persistence of the focal troop in close proximity to the urban edge while ≥3 neighboring troops were previously extirpated suggests that access to low-lying land in conjunction with a land-use practice that does not preclude baboon presence has been fundamental to both their survival and persistence at such a high density. The almost exclusive use of exotic vegetation both as a food source and as a safe refuge for sleeping highlights the ecological flexibility of baboons, but the systematic loss of low-lying productive land poses the single greatest threat to their continued persistence on the Cape Peninsula.  相似文献   
90.
The adaptive significance of discontinuous gas exchange cycles (DGC) in insects is contentious. Based on observations of DGC occurrence in insects of typically large brain size and often socially-complex life history, and spontaneous DGC in decapitated insects, the neural hypothesis for the evolution of DGC was recently proposed. It posits that DGC is a non-adaptive consequence of adaptive down-regulation of brain activity at rest, reverting ventilatory control to pattern-generating circuits in the thoracic ganglia. In line with the predictions of this new hypothesis, we expected a higher likelihood of DGC in the gregarious phase of the desert locust (Schistocerca gregaria, Orthoptera), which is characterized by a larger brain size and increased sensory sensitivity compared with the solitary phase. Furthermore, surgical severing of the neural connections between head and thoracic ganglia was expected to increase DGC prevalence in both phases, and to eliminate phase-dependent variation in gas exchange patterns. Using flow-through respirometry, we measured metabolic rates and gas exchange patterns in locusts at 30°C. In contrast to the predictions of the neural hypothesis, we found no phase-dependent differences in DGC expression. Likewise, surgically severing the descending regulation of thoracic ventilatory control did not increase DGC prevalence in either phase. Moreover, connective-cut solitary locusts abandoned DGC altogether, and employed a typical continuous gas exchange pattern despite maintaining metabolic rate levels of controls. These results are not consistent with the predictions of the neural hypothesis for the evolution of DGC in insects, and instead suggest neural plasticity of ventilatory control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号