首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   9篇
  2022年   3篇
  2021年   3篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2014年   12篇
  2013年   6篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
61.
The process of the breathing (input) to the heart rate (output) of man is considered for system identification by the input-output relationship, using a mathematical model expressed as integral equations. The integral equation is considered and fixed so that the identification method reduces to the determination of the values within the integral, called kernels, resulting in an integral equation whose input-output behaviour is nearly identical to that of the system. This paper uses an algorithm of kernel identification of the Volterra series which greatly reduces the computational burden and eliminates the restriction of using white Gaussian input as a test signal. A second-order model is the most appropriate for a good estimate of the system dynamics. The model contains the linear part (first-order kernel) and quadratic part (second-order kernel) in parallel, and so allows for the possibility of separation between the linear and non-linear elements of the process. The response of the linear term exhibits the oscillatory input and underdamped nature of the system. The application of breathing as input to the system produces an oscillatory term which may be attributed to the nature of sinus node of the heart being sensitive to the modulating signal the breathing wave. The negative-on diagonal seems to cause the dynamic asymmetry of the total response of the system which opposes the oscillatory nature of the first kernel related to the restraining force present in the respiratory heart rate system. The presence of the positive-off diagonal of the second-order kernel of respiratory control of heart rate is an indication of an escape-like phenomenon in the system.  相似文献   
62.
ELMODs are a family of three mammalian paralogues that display GTPase-activating protein (GAP) activity toward a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogues ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators and compare them to those of ELMOD2, allowing the determination of functional redundancy among the family members. We found strong similarities in phenotypes resulting from deletion of either Elmod1 or Elmod3 and marked differences from those arising in Elmod2 deletion lines. Deletion of either Elmod1 or Elmod3 results in the decreased ability of cells to form primary cilia, loss of a subset of proteins from cilia, and accumulation of some ciliary proteins at the Golgi, predicted to result from compromised traffic from the Golgi to cilia. These phenotypes are reversed upon activating mutant expression of either ARL3 or ARL16, linking their roles to ELMOD1/3 actions.  相似文献   
63.
Two unrelated xeroderma pigmentosum (XP) patients, with and without neurological abnormalities, respectively, had identical defects in the XPC DNA nucleotide excision repair (NER) gene. Patient XP21BE, a 27-year-old woman, had developmental delay and early onset of sensorineural hearing loss. In contrast, patient XP329BE, a 13-year-old boy, had a normal neurological examination. Both patients had marked lentiginous hyperpigmentation and multiple skin cancers at an early age. Their cultured fibroblasts showed similar hypersensitivity to killing by UV and reduced repair of DNA photoproducts. Cells from both patients had a homozygous c.2T>G mutation in the XPC gene which changed the ATG initiation codon to arginine (AGG). Both had low levels of XPC message and no detectable XPC protein on Western blotting. There was no functional XPC activity in both as revealed by the failure of localization of XPC and other NER proteins at the sites of UV-induced DNA damage in a sensitive in vivo immunofluorescence assay. XPC cDNA containing the initiation codon mutation was functionally inactive in a post-UV host cell reactivation (HCR) assay. Microsatellite markers flanking the XPC gene showed only a small region of identity ( approximately 30kBP), indicating that the patients were not closely related. Thus, the initiation codon mutation resulted in DNA repair deficiency in cells from both patients and greatly increased cancer susceptibility. The neurological abnormalities in patient XP21BE may be related to close consanguinity and simultaneous inheritance of other recessive genes or other gene modifying effects rather than the influence of XPC gene itself.  相似文献   
64.
The growth yields of 10 strains ofBacteroides fragilis isolated from a variety of clinical sites were determined in (a) basal medium, (b) basal medium plus heme, and (c) basal medium plus heme and menadione. The molar growth yield values, expressed as a function of glucose (YG) and ATP produced (YATP) for 24 h and 48 h were used for a comparison of different strains. Considerable variation occurred among strains, but in general only the results from 24-h grown cells were reproducible. After this period, the microscopic appearance of cells changed dramatically from well-formed, intact cells to large collections of extracellular vesicles and lysed cells. All strains were stimulated by heme, but marked differences occurred among strains. The addition of heme and menadione to the basal medium increased the YG values of some strains, whereas others were unaffected. Heme-cultured cells produced acetate, propionate, and succinate as major metabolic end products and possessed cytochrome b, menaquinone-10, and fumarate reductase activity. Strain NCTC 9343 grown without added heme by continuous culture or batch culture produced cells that were morphologically and biochemically similar. Under both conditions these cells lacked cytochromes, menaquinones, and fumarate reductase activity, but produced high levels of lactate and fumarate together with lower levels of acetate, propionate, and succinate.  相似文献   
65.
Lessonia is the main Laminariales found along the southeast Pacific coast. Lessonia nigrescens Bory de Saint‐Vincent in the intertidal and Lessonia trabeculata Villouta et Santelices in the subtidal, are the most important habitat constructors in rocky coastal communities in northern and central Chile. In both species, the seasonal production and erosion of distal tissue were estimated in biomass units using the Area of Constant Biomass Model that combined the individual blade elongation, obtained with the traditional hole‐punching method, with the blade length and biomass distribution along the blade. In austral late spring (December 96) and autumn (May 97), blade production and erosion were transformed to the level of population from standing stock measurements (number and biomass of blades and plants per substrate area), considering that previous blade weight analysis showed the highest and lowest values at these times, as well as the population parameter extremes that were expected to occur. Both species displayed a seasonal pattern, with a production increase in later winter and spring and decrease towards the end of summer that coincided with higher distal tissue erosion. At the level of individual blades, Lessonia trabeculata showed higher mean production (0.026 g dw d−1) and erosion (0.01 g dw d−1) than L. nigrescens (production 0.01 g dw d−1 and loss 0.002 g dw d−1). The standing stocks, with respect to density and biomass, were similar in spring and autumn for both populations. Nevertheless, the net productivity (production minus erosion) of the intertidal L. nigrescens showed greater values due to the greater density of blades (2112 ± 1360 (SE) blades m−2) compared with the subtidal L. trabeculata (527 ± 151 (SE) blades m−2). Spring net productivities of 42 g dw m−2d−1 (254 g ww m−2d−1; 11.46 gC m−2d−1) for L. nigrescens and 11 g dw m−2 d−1 (64 g ww m−2 d−1; 2.46 gC m−2d−1) for L. trabeculata were estimated. A preliminary model of production and biomass fate for Lessonia populations is proposed.  相似文献   
66.
Fluorescent pseudomonad isolates G309 and CW2, in combination with the resistance inducer acibenzolar-S-methyl (ASM), improved control of fungal and bacterial diseases on tomato plants. The interactions of the bacteria in the presence of ASM showed that in vitro growth of Pseudomonas fluorescens G309 and Pseudomonas sp. strain CW2 was not affected in King's B broth supplemented with 10 and 20 microM ASM. Also, the bacterial cells were not able to utilize ASM as a nutrient source. In vitro production of the two antimicrobial secondary metabolites phenazine-1-carboxylic acid and 2-OH-phenazine by the isolate CW2 was not affected within 3 days from incubation. In contrary, addition of ASM at a concentration of 20 microM to King's B liquid medium significantly increased production of salicylic acid by isolate G309. When roots of tomato plants were treated with G309 or CW2 cell suspensions containing 20 microM ASM, the number of bacterial cells recovered from the rhizosphere was significantly higher in the combined treatments than in the single applications 5, 10, and 15 days after inoculation. However, ASM at a higher concentration (50 microM) did not appreciably enhance the population sizes of either bacterial isolate in the rhizosphere. Enhanced bacterial cell densities in the rhizosphere of tomato plants were also determined following simultaneous treatments of tomato roots with 10 and 20 microM ASM in combination with the transformed isolate G309-384 (mini-Tn5gfp), which encodes the green fluorescent protein.  相似文献   
67.
68.
Plant species affect soil bacterial diversity and compositions. However, little is known about the role of dominant plant species in shaping the soil bacterial community during the restoration of sandy grasslands in Horqin Sandy Land, northern China. We established a mesocosm pots experiment to investigate short‐term responses of soil bacterial diversity and composition, and the related soil properties in degraded soils without vegetation (bare sand as the control, CK) to restoration with five plant species that dominate across restoration stages: Agriophyllum squarrosum (AS), Artemisia halodendron (AH), Setaria viridis (SV), Chenopodium acuminatum (CA), and Corispermum macrocarpum (CM). We used redundancy analysis (RDA) to analyze the association between soil bacterial composition and soil properties in different plant species. Our results indicated that soil bacterial diversity was significantly lower in vegetated soils independent of plant species than in the CK. Specifically, soil bacterial species richness and diversity were lower under the shrub AH and the herbaceous plants AS, SV, and CA, and soil bacterial abundance was lower under AH compared with the CK. A field investigation confirmed the same trends where soil bacteria diversity was lower under AS and AH than in bare sand. The high‐sequence annotation analysis showed that Proteobacteria, Actinobacteria, and Bacteroidetes were the most common phyla in sandy land irrespective of soil plant cover. The OTUs (operational taxonomic units) indicated that some bacterial species were specific to the host plants. Relative to bare sand (CK), soils with vegetative cover exhibited lower soil water content and temperature, and higher soil carbon and nitrogen contents. The RDA result indicated that, in addition to plant species, soil water and nitrogen contents were the most important factors shaping soil bacterial composition in semiarid sandy land. Our study from the pot and field investigations clearly demonstrated that planting dominant species in bare sand impacts bacterial diversity. In semiarid ecosystems, changes in the dominant plant species during vegetation restoration efforts can affect the soil bacterial diversity and composition through the direct effects of plants and the indirect effects of soil properties that are driven by plant species.  相似文献   
69.
70.

Main conclusions

A Chlorovirus aquaglyceroporin expressed in tobacco is localized to the plastid and plasma membranes. Transgenic events display improved response to water deficit. Necrosis in adult stage plants is observed. Aquaglyceroporins are a subclass of the water channel aquaporin proteins (AQPs) that transport glycerol along with other small molecules transcellular in addition to water. In the studies communicated herein, we analyzed the expression of the aquaglyceroporin gene designated, aqpv1, from Chlorovirus MT325, in tobacco (Nicotiana tabacum), along with phenotypic changes induced by aqpv1 expression in planta. Interestingly, aqpv1 expression under control of either a constitutive or a root-preferred promoter, triggered local lesion formation in older leaves, which progressed significantly after induction of flowering. Fusion of aqpv1 with GFP suggests that the protein localized to the plasmalemma, and potentially with plastid and endoplasmic reticulum membranes. Physiological characterizations of transgenic plants during juvenile stage growth were monitored for potential mitigation to water dry-down (i.e., drought) and recovery. Phenotypic analyses on drought mimic/recovery of juvenile transgenic plants that expressed a functional aqpv1 transgene had higher photosynthetic rates, stomatal conductance, and water use efficiency, along with maximum carboxylation and electron transport rates when compared to control plants. These physiological attributes permitted the juvenile aqpv1 transgenic plants to perform better under drought-mimicked conditions and hastened recovery following re-watering. This drought mitigation effect is linked to the ability of the transgenic plants to maintain cell turgor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号