首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   935篇
  免费   126篇
  1061篇
  2023年   5篇
  2022年   8篇
  2021年   25篇
  2020年   16篇
  2019年   13篇
  2018年   16篇
  2017年   13篇
  2016年   31篇
  2015年   40篇
  2014年   39篇
  2013年   52篇
  2012年   75篇
  2011年   70篇
  2010年   34篇
  2009年   49篇
  2008年   61篇
  2007年   56篇
  2006年   43篇
  2005年   46篇
  2004年   42篇
  2003年   36篇
  2002年   44篇
  2001年   10篇
  2000年   12篇
  1999年   10篇
  1998年   14篇
  1997年   4篇
  1996年   8篇
  1995年   7篇
  1993年   7篇
  1992年   9篇
  1991年   9篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   9篇
  1986年   12篇
  1985年   10篇
  1984年   11篇
  1983年   9篇
  1981年   4篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1975年   11篇
  1974年   8篇
  1973年   8篇
  1972年   5篇
  1970年   8篇
  1966年   3篇
排序方式: 共有1061条查询结果,搜索用时 0 毫秒
971.

Context

Hyperphagia, low resting energy expenditure, and abnormal body composition contribute to severe obesity in Prader Willi syndrome (PWS). Irisin, a circulating myokine, stimulates “browning” of white adipose tissue resulting in increased energy expenditure and improved insulin sensitivity. Irisin has not been previously studied in PWS.

Objectives

Compare plasma and salivary irisin in PWS adults and normal controls. Examine the relationship of irisin to insulin sensitivity and plasma lipids.

Design and Study Participants

A fasting blood sample for glucose, lipids, insulin, leptin, adinopectin, and irisin was obtained from 22 PWS adults and 54 healthy BMI-matched volunteers. Saliva was collected for irisin assay in PWS and controls.

Results

Fasting glucose (77±9 vs 83±7mg/dl, p = 0.004), insulin (4.1±2.0 vs 7.9±4.7μU/ml, p<0.001), and triglycerides (74±34 vs 109±71mg/dl, p = 0.007) were lower in PWS than in controls. Insulin resistance (HOMA-IR) was lower (0.79±0.041 vs 1.63±1.02, p<0.001) and insulin sensitivity (QUICKI) was higher (0.41±0.04 vs 0.36±0.03, p<0.001) in PWS. Plasma irisin was similar in both groups, but salivary irisin (64.5±52.0 vs 33.0±12.1ng/ml), plasma leptin (33.5±24.2 vs 19.7±19.3ng/ml) and plasma adinopectin (13.0±10.8 vs 7.6±4.5μg/ml) were significantly greater in PWS (p<0.001). In PWS, plasma irisin showed positive Pearson correlations with total cholesterol (r = 0.58, p = 0.005), LDL-cholesterol (r = 0.59, p = 0.004), and leptin (r = 0.43, p = 0.045). Salivary irisin correlated negatively with HDL-cholesterol (r = -0.50, p = 0.043) and positively with LDL-cholesterol (r = 0.51, p = 0.037) and triglycerides (r = 0.50, p = 0.041).

Conclusions

Salivary irisin was markedly elevated in PWS although plasma irisin was similar to levels in controls. Significant associations with plasma lipids suggest that irisin may contribute to the metabolic phenotype of PWS.  相似文献   
972.
Adult stem cells have a major role in endometrial physiology, including remodelling and repair. However, they also have a critical role in the development and progression of endometriosis. Bone marrow‐derived stem cells engraft eutopic endometrium and endometriotic lesions, differentiating to both stromal and epithelial cell fates. Using a mouse bone marrow transplantation model, we show that bone marrow‐derived cells engrafting endometriosis express CXCR4 and CXCR7. Targeting either receptor by the administration of small molecule receptor antagonists AMD3100 or CCX771, respectively, reduced BM‐derived stem cell recruitment into endometriosis implants. Endometriosis lesion size was decreased compared to vehicle controls after treatment with each antagonist in both an early growth and established lesion treatment model. Endometriosis lesion size was not effected when the local effects of CXCL12 were abrogated using uterine‐specific CXCL12 null mice, suggesting an effect primarily on bone marrow cell migration rather than a direct endometrial effect. Antagonist treatment also decreased hallmarks of endometriosis physiopathology such as pro‐inflammatory cytokine production and vascularization. CXCR4 and CXCR7 antagonists are potential novel, non‐hormonal therapies for endometriosis.  相似文献   
973.
Viruses employ various modes to evade immune detection. Two possible evasion modes are a reduction of the number of epitopes presented and the mimicry of host epitopes. The immune evasion efforts are not uniform among viral proteins. The number of epitopes in a given viral protein and the similarity of the epitopes to host peptides can be used as a measure of the viral attempts to hide this protein. Using bioinformatics tools, we here present a genomic analysis of the attempts of four human herpesviruses (herpes simplex virus type 1-human herpesvirus 1, Epstein-Barr virus-human herpesvirus 4, human cytomegalovirus-human herpesvirus 5, and Kaposi's sarcoma-associated herpesvirus-human herpesvirus 8) and one murine herpesvirus (murine herpesvirus 68) to escape from immune detection. We determined the full repertoire of CD8 T-lymphocyte epitopes presented by each viral protein and show that herpesvirus proteins present many fewer epitopes than expected. Furthermore, the epitopes that are presented are more similar to host epitopes than are random viral epitopes, minimizing the immune response. We defined a score for the size of the immune repertoire (the SIR score) based on the number of epitopes in a protein. The numbers of epitopes in proteins expressed in the latent and early phases of infection were significantly smaller than those in proteins expressed in the lytic phase in all tested viruses. The latent and immediate-early epitopes were also more similar to host epitopes than were lytic epitopes. A clear trend emerged from the analysis. In general, herpesviruses demonstrated an effort to evade immune detection. However, within a given herpesvirus, proteins expressed in phases critical to the fate of infection (e.g., early lytic and latent) evaded immune detection more than all others. The application of the SIR score to specific proteins allows us to quantify the importance of immune evasion and to detect optimal targets for immunotherapy and vaccine development.  相似文献   
974.
Drug-resistant hypertensive patients may be treated by mechanical stimulation of stretch-sensitive baroreceptors located in the sinus of carotid arteries. To evaluate the efficacy of endovascular devices to stretch the carotid sinus such that the induced strain might trigger baroreceptors to increase action potential firing rate and thereby reduce systemic blood pressure, numerical simulations were conducted of devices deployed in subject-specific carotid models. Two models were chosen--a typical physiologic carotid and a diminutive atypical physiologic model representing a clinically worst case scenario--to evaluate the effects of device deployment in normal and extreme cases, respectively. Based on the anatomical dimensions of the carotids, two different device sizes were chosen out of five total device sizes available. A fluid structure interaction (FSI) simulation methodology with contact surface between the device and the arterial wall was implemented for resolving the stresses and strains induced by device deployment. Results indicate that device deployment in the carotid sinus of the physiologic model induces an increase of 2.5% and 7.5% in circumferential and longitudinal wall stretch, respectively, and a maximum of 54% increase in von Mises arterial stress at the sinus wall baroreceptor region. The second device, deployed in the diminutive carotid model, induces an increase of 6% in both circumferential and longitudinal stretch and a 50% maximum increase in von Mises stress at the sinus wall baroreceptor region. Device deployment has a minimal effect on blood-flow patterns, indicating that it does not adversely affect carotid bifurcation hemodynamics in the physiologic model. In the smaller carotid model, deployment of the device lowers wall shear stress at sinus by 16% while accelerating flow entering the external carotid artery branch. Our FSI simulations of carotid arteries with deployed device show that the device induces localized increase in wall stretch at the sinus, suggesting that this will activate baroreceptors and subsequently may control hypertension in drug-resistant hypertensive patients, with no consequential deleterious effects on the carotid sinus hemodynamics.  相似文献   
975.
976.
977.
978.
979.
Insects utilize diverse families of ion channels to respond to environmental cues and control mating, feeding, and the response to threats. Although degenerin/epithelial sodium channels (DEG/ENaC) represent one of the largest families of ion channels in Drosophila melanogaster, the physiological functions of these proteins are still poorly understood. We found that the DEG/ENaC channel ppk23 is expressed in a subpopulation of sexually dimorphic gustatory-like chemosensory bristles that are distinct from those expressing feeding-related gustatory receptors. Disrupting ppk23 or inhibiting activity of ppk23-expressing neurons did not alter gustatory responses. Instead, blocking ppk23-positive neurons or mutating the ppk23 gene delayed the initiation and reduced the intensity of male courtship. Furthermore, mutations in ppk23 altered the behavioral response of males to the female-specific aphrodisiac pheromone 7(Z), 11(Z)-Heptacosadiene. Together, these data indicate that ppk23 and the cells expressing it play an important role in the peripheral sensory system that determines sexual behavior in Drosophila.  相似文献   
980.
We demonstrate that a live epithelial cell monolayer can act as a planar waveguide. Our infrared reflectivity measurements show that highly differentiated simple epithelial cells, which maintain tight intercellular connectivity, support efficient waveguiding of the infrared light in the spectral region of 1.4–2.5 µm and 3.5–4 µm. The wavelength and the magnitude of the waveguide mode resonances disclose quantitative dynamic information on cell height and cell-cell connectivity. To demonstrate this we show two experiments. In the first one we trace in real-time the kinetics of the disruption of cell-cell contacts induced by calcium depletion. In the second one we show that cell treatment with the PI3-kinase inhibitor LY294002 results in a progressive decrease in cell height without affecting intercellular connectivity. Our data suggest that infrared waveguide spectroscopy can be used as a novel bio-sensing approach for studying the morphology of epithelial cell sheets in real-time, label-free manner and with high spatial-temporal resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号