首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   689篇
  免费   91篇
  2023年   3篇
  2022年   6篇
  2021年   22篇
  2020年   13篇
  2019年   9篇
  2018年   14篇
  2017年   9篇
  2016年   28篇
  2015年   23篇
  2014年   31篇
  2013年   41篇
  2012年   64篇
  2011年   58篇
  2010年   26篇
  2009年   39篇
  2008年   48篇
  2007年   43篇
  2006年   36篇
  2005年   36篇
  2004年   28篇
  2003年   27篇
  2002年   29篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1992年   8篇
  1991年   5篇
  1990年   9篇
  1987年   5篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1983年   5篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1975年   5篇
  1974年   3篇
  1973年   6篇
  1972年   4篇
  1971年   2篇
  1970年   7篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有780条查询结果,搜索用时 46 毫秒
631.
632.
We combine kinship estimates with traditional F‐statistics to explain contemporary drivers of population genetic differentiation despite high gene flow. We investigate range‐wide population genetic structure of the California spiny (or red rock) lobster (Panulirus interruptus) and find slight, but significant global population differentiation in mtDNA (ΦST = 0.006, = 0.001; Dest_Chao = 0.025) and seven nuclear microsatellites (FST = 0.004, < 0.001; Dest_Chao = 0.03), despite the species’ 240‐ to 330‐day pelagic larval duration. Significant population structure does not correlate with distance between sampling locations, and pairwise FST between adjacent sites often exceeds that among geographically distant locations. This result would typically be interpreted as unexplainable, chaotic genetic patchiness. However, kinship levels differ significantly among sites (pseudo‐F16,988 = 1.39, = 0.001), and ten of 17 sample sites have significantly greater numbers of kin than expected by chance (< 0.05). Moreover, a higher proportion of kin within sites strongly correlates with greater genetic differentiation among sites (Dest_Chao, R2 = 0.66, < 0.005). Sites with elevated mean kinship were geographically proximate to regions of high upwelling intensity (R2 = 0.41, = 0.0009). These results indicate that P. interruptus does not maintain a single homogenous population, despite extreme dispersal potential. Instead, these lobsters appear to either have substantial localized recruitment or maintain planktonic larval cohesiveness whereby siblings more likely settle together than disperse across sites. More broadly, our results contribute to a growing number of studies showing that low FST and high family structure across populations can coexist, illuminating the foundations of cryptic genetic patterns and the nature of marine dispersal.  相似文献   
633.
The ideal free distribution assumes that animals select habitats that are beneficial to their fitness. When the needs of dependent offspring differ from those of the parent, ideal habitat selection patterns could vary with the presence or absence of offspring. We test whether habitat selection depends on reproductive state due to top‐down or bottom‐up influences on the fitness of woodland caribou (Rangifer tarandus caribou), a threatened, wide‐ranging herbivore. We combined established methods of fitting resource and step selection functions derived from locations of collared animals in Ontario with newer techniques, including identifying calf status from video collar footage and seasonal habitat selection analysis through latent selection difference functions. We found that females with calves avoided predation risk and proximity to roads more strongly than females without calves within their seasonal ranges. At the local scale, females with calves avoided predation more strongly than females without calves. Females with calves increased predation avoidance but not selection for food availability upon calving, whereas females without calves increased selection for food availability across the same season. These behavioral responses suggest that habitat selection by woodland caribou is influenced by reproductive state, such that females with calves at heel use habitat selection to offset the increased vulnerability of their offspring to predation risk.  相似文献   
634.
J. van Rijn  Y. Tal    Y. Barak 《Applied microbiology》1996,62(7):2615-2620
Intermediate nitrite accumulation during denitrification by Pseudomonas stutzeri isolated from a denitrifying fluidized bed reactor was examined in the presence of different volatile fatty acids. Nitrite accumulated when acetate or propionate served as the carbon and electron source but did not accumulate in the presence of butyrate, valerate, or caproate. Nitrite accumulation in the presence of acetate was caused by differences in the rates of nitrate and nitrite reduction and, in addition, by competition between nitrate and nitrite reduction pathways for electrons. Incubation of the cells with butyrate resulted in a slower nitrate reduction rate and a faster nitrite reduction rate than incubation with acetate. Whereas nitrate inhibited the nitrite reduction rate in the presence of acetate, no such inhibition was found in butyrate-supplemented cells. Cytochromes b and c were found to mediate electron transport during nitrate reduction by the cells. Cytochrome c was reduced via a different pathway when nitrite-reducing cells were incubated with acetate than when they were incubated with butyrate. Furthermore, addition of antimycin A to nitrite-reducing cells resulted in partial inhibition of electron transport to cytochrome c in acetate-supplemented cells but not in butyrate-supplemented cells. On the basis of these findings, we propose that differences in intermediate nitrite accumulation are caused by differences in electron flow to nitrate and nitrite reductases during oxidation of either acetate or butyrate.  相似文献   
635.
Stem cells are recruited to the uterus where they differentiate into endometrial cells and have been suggested as potential therapy for uterine injury such as Asherman's syndrome. However, it is unknown whether local intrauterine injection may result in better stem cell engraftment of the uterus compared with systemic administration, and whether uterine‐derived cells (UDCs) may confer an advantage over BM‐derived cells (BMDCs). Mice underwent local injury to a single uterine horn. Green fluorescent protein (GFP)‐expressing BMDCs, UDCs or saline (control) were injected either intravenously or locally (uterine lumen) into wild‐type recipients. Two or 3 weeks post‐transplant, uterine tissues were collected for fluorescence‐activated cell sorting (FACS) and immunohistochemistry/immunofluorescence studies. Mice injected intravenously with BMDCs or UDCs had increased GFP+ cells recruitment to the non‐injured or injured uterus compared to those injected locally. No significant differences were noted in GFP+ cell recruitment to the injured versus non‐injured horn. In addition, systemic injection of BMDCs led to greater recruitment of GFP+ cells at 2 weeks and 3 weeks compared with UDCs. Immunohistochemical staining demonstrated that GFP+ cells were found in stroma but not in epithelium or blood vessels. Immunofluorescence analysis revealed that GFP+ cells were mostly CD45‐negative, and negative for CD31 and cytokeratin, confirming their stromal identity. In conclusion, the systemic route of administration results in better recruitment of BMDCs or UDCs to the injured uterus than local injection. In addition, BMDCs recruitment to the uterus is greater than UDCs. These findings inform the development of stem cell‐based therapies targeting the uterus.  相似文献   
636.
Nitroxides are cell-permeable stable radicals that protect biomolecules from oxidative damage in several ways. The mechanisms of protection studied to date include removal of superoxide radicals as SOD-mimics, oxidation of transition metal ions to preempt the Fenton reaction, and scavenging carbon-centered radicals. However, there is no agreement regarding the reaction of piperidine nitroxides with peroxyl radicals. The question of whether they can protect by scavenging peroxyl radicals is important because these radicals are formed in the presence of oxygen abundant in biological tissues. To further our understanding of the antioxidative behavior of piperidine nitroxides, we studied their effect on biochemical systems exposed to the water soluble radical initiator 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH). AAPH thermally decomposes to yield tert-amidinopropane radicals (t-AP(*)) that readily react with oxygen to form peroxyl radicals (t-APOO(*)). It has recently been reported that piperidine nitroxides protect plasmid DNA from t-AP(*) though not from t-APOO(*). The present study was directed at the question of whether these nitroxides can protect biological systems from damage inflicted by peroxyl radicals. The reaction of nitroxides with AAPH-derived radicals was followed by cyclic voltammetry and electron paramagnetic resonance spectroscopy, whereas the accumulation of peroxide was iodometrically assayed. Assaying DNA damage in vitro, we demonstrate that piperidine nitroxides protect from both t-AP(*) and t-APOO(*). Similarly, nitroxides inhibit AAPH-induced enzyme inactivation. The results indicate that piperidine nitroxides protect the target molecule by reacting with and detoxifying peroxyl radicals.  相似文献   
637.
638.
639.
The softening of fleshy fruits, such as tomato (Solanum lycopersicum), during ripening is generally reported to result principally from disassembly of the primary cell wall and middle lamella. However, unsuccessful attempts to prolong fruit firmness by suppressing the expression of a range of wall-modifying proteins in transgenic tomato fruits do not support such a simple model. 'Delayed Fruit Deterioration' (DFD) is a previously unreported tomato cultivar that provides a unique opportunity to assess the contribution of wall metabolism to fruit firmness, since DFD fruits exhibit minimal softening but undergo otherwise normal ripening, unlike all known nonsoftening tomato mutants reported to date. Wall disassembly, reduced intercellular adhesion, and the expression of genes associated with wall degradation were similar in DFD fruit and those of the normally softening 'Ailsa Craig'. However, ripening DFD fruit showed minimal transpirational water loss and substantially elevated cellular turgor. This allowed an evaluation of the relative contribution and timing of wall disassembly and water loss to fruit softening, which suggested that both processes have a critical influence. Biochemical and biomechanical analyses identified several unusual features of DFD cuticles and the data indicate that, as with wall metabolism, changes in cuticle composition and architecture are an integral and regulated part of the ripening program. A model is proposed in which the cuticle affects the softening of intact tomato fruit both directly, by providing a physical support, and indirectly, by regulating water status.  相似文献   
640.
Isaac S  Walfridsson J  Zohar T  Lazar D  Kahan T  Ekwall K  Cohen A 《Genetics》2007,175(4):1549-1560
Epe1 is a JmjC domain protein that antagonizes heterochromatization in Schizosaccharomyces pombe. Related JmjC domain proteins catalyze a histone demethylation reaction that depends on Fe(II) and alpha-ketoglutarate. However, no detectable demethylase activity is associated with Epe1, and its JmjC domain lacks conservation of Fe(II)-binding residues. We report that Swi6 recruits Epe1 to heterochromatin and that overexpression of epe1+, like mutations in silencing genes or overexpression of swi6+, upregulates expression of certain genes. A significant overlap was observed between the lists of genes that are upregulated by overexpression of epe1+ and those that are upregulated by mutations in histone deacetylase genes. However, most of the common genes are not regulated by Clr4 histone methyltransferase. This suggests that Epe1 interacts with the heterochromatin assembly pathway at the stage of histone deacetylation. Mutational inactivation of Epe1 downregulates approximately 12% of S. pombe genes, and the list of these genes overlaps significantly with the lists of genes that are upregulated by mutations in silencing genes and genes that are hyperacetylated at their promoter regions in clr6-1 mutants. We propose that an interplay between the repressive HDACs activity and Epe1 helps to regulate gene expression in S. pombe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号