首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28794篇
  免费   16074篇
  国内免费   2篇
  44870篇
  2022年   113篇
  2021年   444篇
  2020年   2210篇
  2019年   3740篇
  2018年   3854篇
  2017年   4128篇
  2016年   4138篇
  2015年   4076篇
  2014年   3716篇
  2013年   4157篇
  2012年   1907篇
  2011年   1629篇
  2010年   3092篇
  2009年   1888篇
  2008年   810篇
  2007年   379篇
  2006年   332篇
  2005年   401篇
  2004年   368篇
  2003年   354篇
  2002年   345篇
  2001年   335篇
  2000年   286篇
  1999年   213篇
  1998年   57篇
  1997年   51篇
  1996年   51篇
  1995年   49篇
  1992年   84篇
  1991年   62篇
  1990年   83篇
  1989年   76篇
  1988年   83篇
  1987年   82篇
  1986年   69篇
  1985年   79篇
  1984年   63篇
  1983年   56篇
  1982年   53篇
  1981年   46篇
  1980年   39篇
  1979年   67篇
  1978年   80篇
  1977年   54篇
  1976年   43篇
  1975年   49篇
  1974年   55篇
  1973年   63篇
  1972年   52篇
  1970年   48篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
982.
Simultaneous molecular dating of population and species divergences is essential in many biological investigations, including phylogeography, phylodynamics and species delimitation studies. In these investigations, multiple sequence alignments consist of both intra‐ and interspecies samples (mixed samples). As a result, the phylogenetic trees contain interspecies, interpopulation and within‐population divergences. Bayesian relaxed clock methods are often employed in these analyses, but they assume the same tree prior for both inter‐ and intraspecies branching processes and require specification of a clock model for branch rates (independent vs. autocorrelated rates models). We evaluated the impact of a single tree prior on Bayesian divergence time estimates by analysing computer‐simulated data sets. We also examined the effect of the assumption of independence of evolutionary rate variation among branches when the branch rates are autocorrelated. Bayesian approach with coalescent tree priors generally produced excellent molecular dates and highest posterior densities with high coverage probabilities. We also evaluated the performance of a non‐Bayesian method, RelTime, which does not require the specification of a tree prior or a clock model. RelTime's performance was similar to that of the Bayesian approach, suggesting that it is also suitable to analyse data sets containing both populations and species variation when its computational efficiency is needed.  相似文献   
983.
984.
985.
Wood growth constitutes the main process for long‐term atmospheric carbon sequestration in vegetation. However, our understanding of the process of wood growth and its response to environmental drivers is limited. Current dynamic global vegetation models (DGVMs) are mainly photosynthesis‐driven and thus do not explicitly include a direct environmental effect on tree growth. However, physiological evidence suggests that, to realistically model vegetation carbon allocation under increased climatic stressors, it is crucial to treat growth responses independently from photosynthesis. A plausible growth response function suitable for global simulations in DGVMs has been lacking. Here, we present the first soil water‐growth response function and parameter range for deciduous and evergreen conifers. The response curve was calibrated against European larch and Norway spruce in a dry temperate forest in the Swiss Alps. We present a new data‐driven approach based on a combination of tree ring width (TRW) records, growing season length and simulated subdaily soil hydrology to parameterize ring width increment simulations. We found that a simple linear response function, with an intercept at zero moisture stress, used in growth simulations reproduced 62.3% and 59.4% of observed TRW variability for larch and spruce respectively and, importantly, the response function slope was much steeper than literature values for soil moisture effects on photosynthesis and stomatal conductance. Specifically, we found stem growth stops at soil moisture potentials of ?0.47 MPa for larch and ?0.66 MPa for spruce, whereas photosynthesis in trees continues down to ?1.2 MPa or lower, depending on species and measurement method. These results are strong evidence that the response functions of source and sink processes are indeed very different in trees, and need to be considered separately to correctly assess vegetation responses to environmental change. The results provide a parameterization for the explicit representation of growth responses to soil water in vegetation models.  相似文献   
986.
Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.  相似文献   
987.
Clavija domingensis Urb. & Ekman was one of the many Haitian endemics that were described based on collections made by the great Swedish botanist Leonard Ekman between 1924 and 1928. The species is Critically Endangered sensu IUCN (criteria c2a(i); D) and it is currently the focus of conservation initiatives in Jardin Botanique des Cayes (Haiti), Jardín Botánico Nacional Dr. Rafael M. Moscoso (Dominican Republic), and Fairchild Tropical Botanic Garden (U.S.A.). Now known from only six localities from southern Haiti, each locality only represents a single individual. The species is illustrated based on plants grown in Fairchild Tropical Botanic Garden.  相似文献   
988.
Three case studies involving two temperate Australian seagrass species – Pondweed (Ruppia tuberosa) and Ribbon Weed (Posidonia australis) – highlight different approaches to their restoration. Seeds and rhizomes were used in three collaborative programmes to promote new approaches to scale up restoration outcomes.  相似文献   
989.
Extreme weather events have become a dominant feature of the narrative surrounding changes in global climate with large impacts on ecosystem stability, functioning and resilience; however, understanding of their risk of co‐occurrence at the regional scale is lacking. Based on the UK Met Office’s long‐term temperature and rainfall records, we present the first evidence demonstrating significant increases in the magnitude, direction of change and spatial co‐localisation of extreme weather events since 1961. Combining this new understanding with land‐use data sets allowed us to assess the likely consequences on future agricultural production and conservation priority areas. All land‐uses are impacted by the increasing risk of at least one extreme event and conservation areas were identified as the hotspots of risk for the co‐occurrence of multiple event types. Our findings provide a basis to regionally guide land‐use optimisation, land management practices and regulatory actions preserving ecosystem services against multiple climate threats.  相似文献   
990.
Cilia are microtubule‐based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号