首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2609篇
  免费   135篇
  2023年   9篇
  2022年   16篇
  2021年   55篇
  2020年   30篇
  2019年   42篇
  2018年   54篇
  2017年   49篇
  2016年   77篇
  2015年   113篇
  2014年   128篇
  2013年   167篇
  2012年   215篇
  2011年   182篇
  2010年   123篇
  2009年   120篇
  2008年   189篇
  2007年   137篇
  2006年   146篇
  2005年   150篇
  2004年   153篇
  2003年   120篇
  2002年   101篇
  2001年   32篇
  2000年   30篇
  1999年   42篇
  1998年   16篇
  1997年   15篇
  1996年   10篇
  1995年   15篇
  1994年   13篇
  1993年   9篇
  1992年   18篇
  1991年   10篇
  1990年   17篇
  1989年   29篇
  1988年   14篇
  1987年   10篇
  1986年   5篇
  1985年   8篇
  1984年   9篇
  1983年   9篇
  1981年   6篇
  1979年   8篇
  1978年   5篇
  1976年   3篇
  1975年   3篇
  1974年   8篇
  1970年   3篇
  1969年   3篇
  1966年   3篇
排序方式: 共有2744条查询结果,搜索用时 984 毫秒
61.
Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H2O2-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.  相似文献   
62.
Apoptosis is an important mechanism to maintain homeostasis in mammals, and disruption of the apoptosis regulation mechanism triggers a range of diseases, such as cancer, autoimmune diseases, and developmental disorders. The severity of influenza A virus (IAV) infection is also closely related to dysfunction of apoptosis regulation. In the virus infected cells, the functions of various host cellular molecules involved in regulation of induction of apoptosis are modulated by IAV proteins to enable effective virus replication. The modulation of the intracellular signaling pathway inducing apoptosis by the IAV infection also affects extracellular mechanisms controlling apoptosis, and triggers abnormal host responses related to the disease severity of IAV infections. This review focuses on apoptosis related molecules involved in IAV replication and pathogenicity, the strategy of the virus propagation through the regulation of apoptosis is also discussed.  相似文献   
63.
Although the absence of intervening sequences (IVSs) within the 23S rRNA genes in Campylobacter lari isolates has been described, there are apparently no reports regarding correlations between the nucleotide sequences of 23S rRNA genes and erythromycin (Ery) susceptibility in C. lari isolates. Here, we determined the minimum inhibitory concentrations of 35 C. lari isolates [n?=?19 for urease-positive thermophilic Campylobacter (UPTC); n?=?16 urease-negative (UN) C. lari] obtained from Asia, Europe, and North America. We found that the 18 isolates were resistant to the Ery (defined as ≧8 μg/mL), and three isolates, UPTC A1, UPTC 92251, and UPTC 504, showed increased resistance (16 μg/mL). No correlations between the IVSs in the helix 45 region within the 23S rRNA gene sequences and Ery resistance were identified in the C. lari isolates examined. In addition, no point mutations occurred at any expected or putative position within the V domain in the isolates. In conclusion, antibiotic resistance against the macrolide erythromycin is mediated through an alternative pathway to that described above.  相似文献   
64.
When a pyridine solution of zinc methyl 8-vinyl-mesopyropheophorbide-a was irradiated with visible light in the presence of ethanol, ascorbic acid and diazabicylo[2.2.2]octane under nitrogen at room temperature, zinc (7R/S,8E)-8-ethylidene-bacteriochlorin was obtained via 1,4-hydrogenation. The 1,4-photoreduction is similar to the enzymatic reduction of 8-vinyl-chlorophyllides to (E)-8-ethylidene-bacteriochlorins in anoxygenic photosynthetic bacteria producing bacteriochlorophylls-b/g. The resulting zinc 8-ethylidene-bacteriochlorin was readily isomerized to the chemically more stable 8-ethyl-chlorin by further illumination. As a by-product, zinc 8-vinyl-7,8-cis-bacteriochlorin was slightly formed by photoinduced 1,2-hydrogenation of zinc 8-vinyl-chlorin.  相似文献   
65.
A novel chemical tool compound that is an antagonist of brassinolide (BL, 1)-induced rice lamina joint inclination was developed. Although 2-O-, 3-O-, 22-O-, or 23-O-methylation of BL causes a critical decrease in biological activity,5 a crystal structure of the extracellular leucine-rich repeat (LRR) domain of BRASSINOSTEROID-INSENSITIVE I (BRI1) bound to BL3, 4 indicates that the loss of activity of the O-methylated BL may result from not only the low affinity to BRI1, but also from blocking the interaction with another BR signaling factor, a partner protein of BRI1 (e.g., BRI1-ASSOCIATED KINASE 1, BAK1). On the basis of this hypothesis we synthesized the BL 2,3-acetonide 2, the 22,23-acetonide 3, and the 2,3:22,23-diacetonide 4 to assess the possibility of 2-O- and 3-O- or/and 22-O- and 23-O-alkylated BL as an antagonist in BR signaling evoked by exogenously applied BL. The 2,3-acetonide 2 more strongly inhibited the lamina inclination caused by BL relative to the 22,23-acetonide 3, whereas the diacetonide 4 had no effect most likely due to its increased hydrophobicity. This suggested that the 2,3-hydroxyl groups of BL play a more significant role in the interaction with a BRI1 partner protein rather than BRI1 itself in rice lamina joint inclination. Taken together it was demonstrated that BL, the most potent agonist of BRI1, is transformed into an antagonist by functionalization of the 2,3-dihydroxyl groups as the acetonide. This finding opens the door to the potential development of a chemical tool that modulates protein–protein interactions in the BR signaling pathway to dissect the BR-dependent processes.  相似文献   
66.
67.
Pyrroloquinoline quinone-dependent quinoprotein alcohol dehydrogenases (PQQ-ADH) require ammonia or primary amines as activators in in vitro assays with artificial electron acceptors. We found that PQQ-ADH from Pseudomonas putida KT2440 (PpADH) was activated by various primary amines, di-methylamine, and tri-methylamine. The alcohol oxidation activity of PpADH was strongly enhanced and the affinity for substrates was also improved by pentylamine as an activator.  相似文献   
68.
The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs.  相似文献   
69.
Midkine (MDK) is a heparin-binding growth factor that is highly expressed in many malignant tumors, including lung cancers. MDK activates the PI3K pathway and induces anti-apoptotic activity, in turn enhancing the survival of tumors. Therefore, the inhibition of MDK is considered a potential strategy for cancer therapy. In the present study, we demonstrate a novel small molecule compound (iMDK) that targets MDK. iMDK inhibited the cell growth of MDK-positive H441 lung adenocarcinoma cells that harbor an oncogenic KRAS mutation and H520 squamous cell lung cancer cells, both of which are types of untreatable lung cancer. However, iMDK did not reduce the cell viability of MDK-negative A549 lung adenocarcinoma cells or normal human lung fibroblast (NHLF) cells indicating its specificity. iMDK suppressed the endogenous expression of MDK but not that of other growth factors such as PTN or VEGF. iMDK suppressed the growth of H441 cells by inhibiting the PI3K pathway and inducing apoptosis. Systemic administration of iMDK significantly inhibited tumor growth in a xenograft mouse model in vivo. Inhibition of MDK with iMDK provides a potential therapeutic approach for the treatment of lung cancers that are driven by MDK.  相似文献   
70.
Creation of new potent antifouling active compounds is important for the development of environmentally friendly antifouling agents. Fifteen isocyanide congeners derived from proteinogenic amino acids were synthesized, and the antifouling activity and toxicity of these compounds against cypris larvae of the barnacle Balanus amphitrite were investigated. All synthesized amino acid‐isocyanides exhibited potent anti‐barnacle activity with EC50 values of 0.07 – 10.34 μg/ml after 120 h exposure without significant toxicity. In addition, seven compounds showed more than 95% settlement inhibition of the cypris larvae at 10 μg/ml after 120 h exposure without any mortality observed. Considering their structure, these amino acid‐isocyanides would eventually be biodegraded to their original nontoxic amino acids. These should be useful for further research focused on the development of environmentally friendly antifoulants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号