首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2051篇
  免费   102篇
  2153篇
  2023年   9篇
  2022年   16篇
  2021年   55篇
  2020年   29篇
  2019年   39篇
  2018年   47篇
  2017年   45篇
  2016年   69篇
  2015年   91篇
  2014年   113篇
  2013年   122篇
  2012年   184篇
  2011年   165篇
  2010年   118篇
  2009年   99篇
  2008年   156篇
  2007年   110篇
  2006年   110篇
  2005年   121篇
  2004年   118篇
  2003年   99篇
  2002年   82篇
  2001年   9篇
  2000年   11篇
  1999年   25篇
  1998年   12篇
  1997年   12篇
  1996年   7篇
  1995年   13篇
  1994年   5篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   9篇
  1989年   11篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有2153条查询结果,搜索用时 9 毫秒
71.
A cDNA encoding sorbitol-6-phosphate dehydrogenase (S6PDH), which is a key enzyme in sorbitol biosynthesis in Rosaceae, was introduced into the Japanese persimmon (Diospyros kaki) to increase the environmental stress tolerance. Resultant transformants exhibited salt-tolerance with dwarfing phenotypes. Therefore, we studied two transgenic lines to understand the physiological mechanism of this dwarfism: lines PS1 and PS6 accumulated high and moderate levels of sorbitol, respectively. The average length of shoots was significantly shorter as compared with the wild-type in line PS1, while no such decrease was observed in line PS6. The myo-inositol and glucose 6-phosphate (G6P) contents were measured in the transgenic lines because previous work with tobacco transformed with S6PDH had suggested that growth inhibition was due to depletion of these metabolites. Although the myo-inositol content was decreased in PS1 plants, the decrease was much smaller than that observed in transgenic tobacco that accumulates sorbitol. The G6P contents were the same in PS1 plants and phenotypically normal PS6 plants. The level of indole-3-acetic acid (IAA), which affects stem elongation, in line PS1 was similar to the levels in the other lines. A decrease in gibberellin (GA) content generally induces dwarfism in plants. However, GA was not decreased in PS1 plants compared with wild-type or control plants. Therefore, we focused on sorbitol accumulation as the most remarkable feature of PS1 plants. As one possibility, the observed growth inhibition was likely caused by an osmotic imbalance between the cytosol and vacuole.  相似文献   
72.
Synthesis and structure-activity relationship (SAR) study of L-amino acid-based N-type calcium channel blockers are described. The compounds synthesized were evaluated for inhibitory activity against both N-type and L-type calcium channels focusing on selectivity to reduce cardiovascular side effects due to blocking of L-type calcium channels. In the course of screening of our compound library, N-(t-butoxycarbonyl)-L-aspartic acid derivative 1a was identified as an initial lead compound for a new series of N-type calcium channel blockers, which inhibited calcium influx into IMR-32 human neuroblastoma cells with an IC(50) of 3.4 microM. Compound 1a also exhibited blockade of N-type calcium channel current in electrophysiological experiment using IMR-32 cells (34% inhibition at 10 microM, n=3). As a consequence of conversion of amino acid residue of 1a, compound 12a, that include N-(t-butoxycarbonyl)-L-cysteine, was found to be a potent N-type calcium channel blocker with an IC(50) of 0.61 microM. Thus, L-cysteine was selected as a potential structural motif for further modification. Optimization of C- and N-terminals of L-cysteine using S-cyclohexylmethyl-L-cysteine as a central scaffold led to potent and selective N-type calcium channel blocker 21f, which showed improved inhibitory potency (IC(50) 0.12 microM) and 12-fold selectivity for N-type calcium channels over L-type channels.  相似文献   
73.
Mitochondrial (mt) biogenesis depends on both the nuclear and mt genomes, and a coordination of these two genetic systems is necessary for proper cell functioning. Little is known about the regulatory mechanisms of mt translation or about the expression of mt translation factors. Here, we studied the expression of mt translation factors during 12-O-tetradecanoyl-1-phorbol-13-acetate (TPA)-induced terminal differentiation of HL-60 cells. For all mt translation factors investigated, mRNA expression was markedly down-regulated in a coordinate and specific manner, whereas mRNA levels for the cytoplasmic translation factors showed only a slight reduction. An actinomycin D chase study and nuclear run-on assay revealed that the TPA-induced decrease in mt elongation factor Tu (EF-Tumt) mRNA mainly results from decreased mRNA stability. Polysome analysis showed that there was no significant translational control of mt translation factor (EF-Tumt, ribosomal proteins L7/L12mt and S12mt) mRNA expression during differentiation. Thus, the decreased protein level of one of these mt translation factors (EF-Tumt) simply reflects its decreased mRNA level. It was also demonstrated by pulse labeling of mt translation products that the down-regulation of mt translational activity is actually associated with down-regulated mt translation factor expression during cellular differentiation. Our results illustrate that the regulatory mechanisms of mt translational activity upon terminal differentiation (in response to the growth arrest) is different to that of the cytoplasmic system, where the control of mRNA translational efficiency of major translation factors is the central mechanism for their down-regulation.  相似文献   
74.
75.
Somatostatin suppresses ghrelin secretion from the rat stomach   总被引:6,自引:0,他引:6  
Ghrelin is an acylated peptide that stimulates food intake and the secretion of growth hormone. While ghrelin is predominantly synthesized in a subset of endocrine cells in the oxyntic gland of the human and rat stomach, the mechanism regulating ghrelin secretion remains unknown. Somatostatin, a peptide produced in the gastric oxyntic mucosa, is known to suppress secretion of several gastrointestinal peptides in a paracrine fashion. By double immunohistochemistry, we demonstrated that somatostatin-immunoreactive cells contact ghrelin-immunoreactive cells. A single intravenous injection of somatostatin reduced the systemic plasma concentration of ghrelin in rats. Continuous infusion of somatostatin into the gastric artery of the vascularly perfused rat stomach suppressed ghrelin secretion in both dose- and time-dependent manner. These findings indicate that ghrelin secretion from the stomach is regulated by gastric somatostatin.  相似文献   
76.
A method for expression and purification of a soluble form of histidine (HIS)-tagged murine prion protein (bacMuPrP), which lacks the entire C-terminal cleavage and glycosyl phosphatidyl inositol (GPI) addition site, has been developed using a recombinant baculovirus expression system and purification with Ni-NTA agarose affinity chromatography. In mammalian sources, PrP(C) is attached to the cell membrane by a GPI anchor. However, in our system, bacMuPrP was secreted into the media, enabling its easy purification in abundance. Indirect immunofluorescence studies and immunoblot analysis localized not in cell membrane but in the perinuclear endoplasmic reticulum region in cells and is secreted into the media. Tunicamycin treatment revealed non-glycosylated proteins were secreted into the media, suggesting that glycosylation is not necessary for bacMuPrP secretion. Density-gradient sedimentation analysis demonstrated a sedimentation coefficient of secretory bacMuPrP as 2.3 S, indicating a monomeric form. Although affinity-purified PrP from mouse brain or recombinant prion protein (PrP) produced by Escherichia coli and refolded in the presence of copper has been reported to display superoxide dismutase (SOD) activity, bacMuPrP did not show SOD activity. These results suggest that bacMuPrP has a different biochemical and biophysical characterization from mammalian and bacterial-derived PrP. Furthermore, this simple expression system may provide an adequate source for structural, functional, and biochemical analyses of PrP.  相似文献   
77.
One of the major roles of brain-derived neurotrophic factor (BDNF) is to promote the differentiation and support the survival of neurons in the central nervous system. The objective of the present study was to evaluate the effect of BDNF on the fate of adult rat hippocampus-derived neural stem cells (AHPCs) transplanted into the developing rat retina. Immunohistochemical analysis showed a significant increase in the ratio of grafted AHPCs stained for MAP2ab (P<0.05) and a marked decrease in the ratio of nestin-positive grafted cells in the slow-releasing BDNF group compared with the control group. The respective changes in the ratios of MAP5 and GFAP-positive grafted cells were comparable for the two groups. The results reported here suggest a potentially beneficial role for extended delivery of BDNF in the differentiation of grafted neural stem cells, which may lead to a novel modification of stem cell transplantation.  相似文献   
78.
Regulated transport of proteins to distinct plasma membrane domains is essential for the establishment and maintenance of cell polarity in all eukaryotic cells. The Rab family small G proteins play a crucial role in determining the specificity of vesicular transport pathways. Rab3B and Rab13 localize to tight junction in polarized epithelial cells and cytoplasmic vesicular structures in non-polarized fibroblasts, but their functions are poorly understood. Here we examined their roles in regulating the cell-surface transport of apical p75 neurotrophin receptor (p75NTR), basolateral low-density lipoprotein receptor (LDLR), and tight junctional Claudin-1 using transport assay in non-polarized fibroblasts. Overexpression of Rab3B mutants inhibited the cell-surface transport of LDLR, but not p75NTR and Claudin-1. In contrast, overexpression of Rab13 mutants impaired the transport of Claudin-1, but not LDLR and p75NTR. These results suggest that Rab3B and Rab13 direct the cell-surface transport of LDLR and Claudin-1, respectively, and may contribute to epithelial polarization.  相似文献   
79.
The purpose of this report was to determine the effect of prion protein (PrP) gene disruption on T lymphocyte function. Previous studies have suggested that normal cellular prion protein (PrP(c)) binds to copper and Cu(2+) is essential for interleukin-2 (IL-2) mRNA synthesis. In this study, IL-2 mRNA levels in a copper-deficient condition were investigated using T lymphocytes from prion protein gene-deficient (PrP(0/0)) and wild-type mice. Results showed that Cu(2+) deficiency had no effect on PrP(c) expression in Con A-activated splenocytes. However, a delay in IL-2 gene expression was observed in PrP(0/0) mouse T lymphocyte cultures using Con A and Cu(2+)-chelator. These results suggest that PrP(c) expression may play an important role in rapid Cu(2+) transfer in T lymphocytes. The rapid transfer of Cu(2+) in murine T lymphocytes could be one of the normal functions of PrP(c).  相似文献   
80.
An Escherichia coli mutant, LL103, harboring a mutation (Ser15 to Phe) in ribosomal protein L7/L12 was isolated among revertants of a streptomycin-dependent strain. In the crystal structure of the L7/L12 dimer, residue 15 within the N-terminal domain contacts the C-terminal domain of the partner monomer. We tested effects of the mutation on molecular assembly by biochemical approaches. Gel electrophoretic analysis showed that the Phe15-L7/L12 variant had reduced ability in binding to L10, an effect enhanced in the presence of 0.05% of nonionic detergent. Mobility of Phe15-L7/L12 on gel containing the detergent was very low compared to the wild-type proteins, presumably because of an extended structural state of the mutant L7/L12. Ribosomes isolated from LL103 cells contained a reduced amount of L7/L12 and showed low levels (15-30% of wild-type ribosomes) of activities dependent on elongation factors and in translation of natural mRNA. The ribosomal activity was completely recovered by addition of an excess amount of Phe15-L7/L12 to the ribosomes, suggesting that the mutant L7/L12 exerts normal functions when bound on the ribosome. The interaction of Ser15 with the C-terminal domain of the partner molecule seems to contribute to formation of the compact dimer structure and its efficient assembly into the ribosomal GTPase center. We propose a model relating compact and elongated forms of L7/L12 dimers. Phe15-L7/L12 provides a new tool for studying the functional structure of the homodimer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号