首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2538篇
  免费   146篇
  2023年   10篇
  2022年   17篇
  2021年   55篇
  2020年   30篇
  2019年   41篇
  2018年   56篇
  2017年   49篇
  2016年   76篇
  2015年   98篇
  2014年   124篇
  2013年   137篇
  2012年   201篇
  2011年   181篇
  2010年   124篇
  2009年   119篇
  2008年   173篇
  2007年   127篇
  2006年   125篇
  2005年   125篇
  2004年   126篇
  2003年   111篇
  2002年   94篇
  2001年   30篇
  2000年   29篇
  1999年   39篇
  1998年   26篇
  1997年   20篇
  1996年   15篇
  1995年   20篇
  1994年   14篇
  1993年   20篇
  1992年   22篇
  1991年   14篇
  1990年   24篇
  1989年   19篇
  1988年   17篇
  1987年   11篇
  1986年   15篇
  1985年   14篇
  1984年   9篇
  1979年   12篇
  1978年   6篇
  1977年   8篇
  1975年   9篇
  1973年   8篇
  1971年   9篇
  1970年   8篇
  1968年   6篇
  1967年   6篇
  1966年   6篇
排序方式: 共有2684条查询结果,搜索用时 62 毫秒
91.
A peptide β2-m21?31, which is a fragment from residue 21 to residue 31 of β2-microgloblin, is experimentally known to self-assemble and form amyloid fibrils. In order to understand the mechanism of amyloid fibril formations, we applied the replica-exchange molecular dynamics method to the system consisting of three fragments of β2-m21?31. From the analyses on the temperature dependence, we found that there is a clear phase transition temperature in which the peptides aggregate with each other. Moreover, we found by the free energy analyses that there are two major stable states: One of them is like amyloid fibrils and the other is amorphous aggregates.  相似文献   
92.
Otolith growth increments in wild-caught alizarin complex one (ALC)-marked honmoroko Gnathopogon caerulescens were examined to verify the veracity of the age determination method in cyprinids. ALC-marked G. caerulescens recaptured from their natural environment had lapilli increment counts outside the ALC ring mark that had formed on a daily basis during the juvenile stage. This apparently being the first direct evidence of daily periodicity of otolith increment formation in wild-caught cyprinids.  相似文献   
93.
Sean M. Naman  Rui Ueda  Takuya Sato 《Oikos》2019,128(7):1005-1014
Dominance hierarchies and the resulting unequal resource partitioning among individuals are key mechanisms of population regulation. The strength of dominance hierarchies can be influenced by size‐dependent tradeoffs between foraging and predator avoidance whereby competitively inferior subdominants can access a larger proportion of limiting resources by accepting higher predation risk. Foraging‐predation risk tradeoffs also depend on resource abundance. Yet, few studies have manipulated predation risk and resource abundance simultaneously; consequently, their joint effect on resource partitioning within dominance hierarchies are not well understood. We addressed this gap by measuring behavioural responses of masu salmon Oncorhynchus masou ishikawae to experimental manipulations of predation risk and resource abundance in a natural temperate forest stream. Responses to predation risk depended on body size and social status such that larger fish (often social dominants) exhibited more risk‐averse behaviour (e.g. lower foraging and appearance rates) than smaller subdominants after exposure to a simulated predator. The magnitude of this effect was lower when resources were elevated, indicating that dominant fish accepted a higher predation risk to forage on abundant resources. However, the influence of resource abundance did not extend to the population level, where predation risk altered the distribution of foraging attempts (a proxy for energy intake) from being skewed towards large individuals to being skewed towards small individuals after predator exposure. Our results imply that size‐dependent foraging–predation risk tradeoffs can weaken the strength of dominance hierarchies by allowing competitively inferior subdominants to access resources that would otherwise be monopolized.  相似文献   
94.
Old yellow enzymes (OYEs) are potential targets of protein engineering for useful biocatalysts because of their excellent asymmetric reductions of enone compounds. Two OYEs from different yeast strains, Candida macedoniensis AKU4588 OYE (CmOYE) and Pichia sp. AKU4542 OYE (PsOYE), have a sequence identity of 46%, but show different substrate preferences; PsOYE shows 3.4-fold and 39-fold higher catalytic activities than CmOYE toward ketoisophorone and (4S)-phorenol, respectively. To gain insights into structural basis of their different substrate preferences, we have solved a crystal structure of PsOYE, and compared its catalytic site structure with that of CmOYE, revealing the catalytic pocket of PsOYE is wider than that of CmOYE due to different positions of Phe246 (PsOYE)/Phe250 (CmOYE) in static Loop 5. This study shows a significance of 3D structural information to explain the different substrate preferences of yeast OYEs which cannot be understood from their amino acid sequences.

Abbreviations: OYE: Old yellow enzymes, CmOYE: Candida macedoniensis AKU4588 OYE, PsOYE: Pichia sp. AKU4542 OYE  相似文献   

95.
The germination mutant TM-31 of Bacillus megaterium ATCC 12872, was isolated by transposon Tn917 insertional mutagenesis. Glucose, L -proline, L -leucine and KNO3 germinated TM-31 poorly. The DNA in the region of the Tn917 insertion was cloned, and its nucleotide sequence determined. One major open reading frame was present on the cloned DNA. The hydrophobic protein encoded is presumably membrane-associated. A homology search revealed that the gene encoded in the region of the Tn917 insertion is homologous to napA of Enterococcus hirae. napA codes for the NaH-antiporter. It is hypothesized that transport of cations must play an important role in spore germination in B. megaterium ATCC 12872.  相似文献   
96.
ObjectivesMammalian DNA methyltransferases are essential to re‐establish global DNA methylation patterns during implantation, which is critical for transmitting epigenetic information to the next generation. In contrast, the significance of methyl‐CpG binding proteins (MBPs) that bind methylated CpG remains almost unknown at this stage. We previously demonstrated that Zbtb38 (also known as CIBZ)—a zinc finger type of MBP—is required for mouse embryonic stem (ES) cell proliferation by positively regulating Nanog expression. However, the physiological function of Zbtb38 in vivo remains unclear.Materials and MethodsThis study used the Cre‐loxP system to generate conditional Zbtb38 knockout mice. Cell proliferation and apoptosis were studied by immunofluorescence staining. Quantitative real‐time PCR, immunoblotting and immunofluorescence were performed to investigate the molecular mechanisms.ResultsGermline loss of the Zbtb38 single allele resulted in decreased epiblast cell proliferation and increased apoptosis shortly after implantation, leading to early embryonic lethality. Heterozygous loss of Zbtb38 reduced the expression of Nanog, Sox2, and the genes responsible for epiblast proliferation, differentiation, and cell viability. Although this early lethal phenotype, Zbtb38 is dispensable for ES cell establishment and identity.ConclusionsThese findings indicate that Zbtb38 is essential for early embryonic development via the suppression of Nanog and Sox2 expression.

Heterozygous loss of Zbtb38 leads to aberrant epiblast cell proliferation and apoptosis shortly after implantation. Heterozygous loss of Zbtb38 reduced the expression of Nanog and Sox2 in ICM and epiblast.  相似文献   
97.
The role of protein kinase C (PKC) and transforming growth factor (TGF)-beta in the proliferation of vascular smooth muscle cells (SMCs) under a high glucose condition was investigated. [3H]-thymidine incorporation under 20 mM glucose was significantly accelerated compared with that under 5.5 mM glucose, and this increase was inhibited by an anti-TGF-beta antibody or a PKC-beta specific inhibitor, LY333531. The amount of active and total TGF-beta1 in the conditioned media did not differ between 5.5 and 20 mM glucose. However, the expression of TGF-beta receptor type II under 20 mM glucose was significantly increased, but that of the TGF-beta receptor type I was not. This increased expression of the TGF-beta receptor type II was prevented by LY333531. These observations suggest that the increased expression of the TGF-beta receptor type II via PKC-beta plays an important role in the accelerated proliferation of SMCs under a high glucose condition, leading to the development of diabetic macroangiopathy.  相似文献   
98.
NK cells and dendritic cells (DCs) are both important in the innate host defense. However, the role of DCs in NK cell-mediated cytotoxicity is unclear. In this study, we designed two culture systems in which human cord blood CD34(+) cells from the same donor were induced to generate NK cells and DCs, respectively. Coculture of the NK cells with DCs resulted in significant enhancement of NK cell cytotoxicity and IFN-gamma production. However, NK cell cytotoxicity and IFN-gamma production were not increased when NK cells and DCs were grown together separated by a transwell membrane. Functional studies demonstrated that 1) concanamycin A, a selective inhibitor of perforin/granzyme B-based cytolysis, blocked DC-stimulated NK cytotoxicity against K562 cells; and 2) neutralizing mAb against Fas ligand (FasL) significantly reduced DC-stimulated NK cytotoxicity against Fas-positive Jurkat cells. In addition, a marked increase of FasL mRNA and FasL protein expression was observed in DC-stimulated NK cells. The addition of neutralizing mAb against IL-18 and IL-12 significantly suppressed DC-stimulated NK cell cytotoxicity. Neutralizing IFN-gamma Ab almost completely inhibited NK cell cytotoxicity against Jurkat cells. These observations suggest that DCs enhance NK cell cytotoxicity by up-regulating both perforin/granzyme B- and FasL/Fas-based pathways. Direct interaction between DCs and NK cells is necessary for DC-mediated enhancement of NK cell cytotoxicity. Furthermore, DC-derived IL-18 and IL-12 were involved in the up-regulation of NK cell cytotoxicity, and endogenous IFN-gamma production plays an important role in Fas-mediated cytotoxicity.  相似文献   
99.
100.
The Escherichia coli gene recA is essential for homologous recombination and DNA repair, and homologs have been identified in eukaryotes. A basidiomycete, Coprinus cinereus, which has many advantages for the study of meiosis, was recently reported to have a homolog of one of these, RAD51. In the yeast Saccharomyces, mutations in the RAD5I gene cause defects in both somatic and meiotic cells. Based on this finding, we screened for a meiosis-specific homolog of recA, equivalent to Lilium LIM15 or Saccharomyces DMC1, in C. cinereus, and isolated a clone containing a 1.2-kb DNA fragment from a cDNA library constructed with Coprinus poly(A)+ RNA isolated from cells undergoing meiosis. The predicted amino acid sequence was 52% identical to the putative gene product of the lily cDNA clone LIM15 and 61% identical to Saccharomyces DMC1, and showed limited sequence similarity to the products of RAD52, 55, and 57. The synchrony of meiosis in Coprinus provides an ideal system for the investigation of differential gene expression in relation to meiosis and fruiting body development. Northern analysis indicated that Coprinus LIM15/DMC1 was expressed at meiotic prophase within 8 h after the onset of karyogamy, suggesting that the gene functions mostly at the stage at which the homologous chromosomes pair, but may not be essential at the point at which they recombine. The gene is not expressed in somatic cells. Received: 8 October 1998 / Accepted: 22 July 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号