首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1661篇
  免费   117篇
  2022年   12篇
  2021年   18篇
  2020年   8篇
  2019年   17篇
  2018年   19篇
  2017年   13篇
  2016年   25篇
  2015年   35篇
  2014年   63篇
  2013年   91篇
  2012年   103篇
  2011年   89篇
  2010年   52篇
  2009年   67篇
  2008年   96篇
  2007年   96篇
  2006年   64篇
  2005年   97篇
  2004年   74篇
  2003年   79篇
  2002年   73篇
  2001年   37篇
  2000年   52篇
  1999年   48篇
  1998年   27篇
  1997年   20篇
  1996年   21篇
  1995年   8篇
  1994年   17篇
  1993年   17篇
  1992年   27篇
  1991年   31篇
  1990年   23篇
  1989年   33篇
  1988年   26篇
  1987年   13篇
  1986年   17篇
  1985年   19篇
  1984年   26篇
  1983年   10篇
  1982年   12篇
  1981年   7篇
  1979年   7篇
  1978年   7篇
  1977年   13篇
  1976年   10篇
  1974年   7篇
  1973年   9篇
  1970年   7篇
  1968年   6篇
排序方式: 共有1778条查询结果,搜索用时 921 毫秒
991.
Matsuo K  Hong JS  Tabayashi N  Ito A  Masuta C  Matsumura T 《Planta》2007,225(2):277-286
We have developed Cucumber mosaic virus (CMV) as a plant virus vector especially for production of pharmaceutical proteins. The CMV vector is a vector modifiable for different host plants and does not require further engineering steps. CMV contains three genomic RNA molecules (RNAs 1–3) necessary for infectivity. With this system, instead of creating different vector constructs for each plant we use, we take advantage of the formation of pseudrecombinants between two CMV isolates by simply reassembling a vector construct (RNA 2 base) and an RNA molecule containing the host determinant (mostly RNA 3). In this study, the gene for acidic fibroblast growth factor (aFGF), one of the human cytokines, was cloned under the control of the subgenomic promoter for RNA 4A of the CMV-based vector, C2-H1. Infected Nicotiana benthamiana plants produced aFGF at levels up to 5–8% of the total soluble protein. The tobacco-produced aFGF was purified, and its biological activity was confirmed. Using this system, which provides a versatile and viable strategy for the production of therapeutic proteins in plants, we also demonstrated a high level of aFGF in Glycine max (soybean) and Arabidopsis thaliana.  相似文献   
992.
Bone marrow-derived mast cells (BMMCs) contain chondroitin sulfate (CS)-E comprised of GlcA-GalNAc(4SO4) units and GlcA-GalNAc(4,6-SO4) units. GalNAc 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate to position 6 of GalNAc(4SO4) residues of CS. On the basis of the specificity of GalNAc4S-6ST, it is thought that CS-E is synthesized in BMMC through the sequential sulfation by chondroitin 4-sulfotransferase (C4ST)-1 and GalNAc4S-6ST. In this paper, we investigated whether GalNAc4S-6ST and C4ST-1 are actually expressed in BMMCs in which CS-E is actively synthesized. As the bone marrow cells differentiate to BMMCs, level of C4ST-1 and GalNAc4S-6ST messages increased, whereas chondroitin 6-sulfotransferase (C6ST)-1 message decreased. In the extract of BMMCs, activity of GalNAc4S-6ST and C4ST but not C6ST were detected. The recombinant mouse GalNAc4S-6ST transferred sulfate to both nonreducing terminal and internal GalNAc(4SO4) residues; the activity toward nonreducing terminal GalNAc(4SO4) was increased with increasing pH. When CS-E synthesized by BMMCs was metabolically labeled with 35SO4 in the presence of bafilomycin A, chloroquine or NH4Cl, the proportion of the nonreducing terminal GalNAc(4,6-SO4) was increased compared with the control, suggesting that GalNAc4S-6ST in BMMC may elaborate CS-E in the intracellular compartment with relatively low pH where sulfation of the internal GalNAc(4SO4) by GalNAc4S-6ST preferentially occurs.  相似文献   
993.
Role of myosin light chain phosphorylation in the regulation of cytokinesis   总被引:1,自引:0,他引:1  
Phosphorylation of regulatory light chain (RMLC) of myosin II at Ser19/Thr18 is likely to play important roles in controlling the morphological changes seen during cell division of cultured mammalian cells. Phosphorylation of RMLC regulates the activity of myosin II, an essntial motor for cytokinesis, and phosphorylation of RMLC shows dramatic changes during mitosis. Two exzymes, myosin phosphatase and kinase, control phosphorvlation of RMLC. Myosin phosphatase is activated during mitosis, apparently as a result of mitosis-specific phosphorylation of the myosin phosphatase targeting subunit (MYPT). This activation of myosin phosphatase is likely to result in RMLC dephosphorylation, causing the disassemly of stress fibers and focal adhesions during prophase. The phosphorylation of MYPT is lost in cyotokinesis, which would decrease myosin phosphatase activity. At the same time, ROCK (Rho-kinase) probably phosphorylates MYPT at its inhibitory sites, further decreasing the activity of myosin phosphatase. These changes in MYPT phosphorylation would raise RMLC phosphorylation, leading to the activation of myosin II for cyotokinesis. RMLC phosphorylation is also regulated by several RMLC kinases including ROCK (Rho-kinase), MLCK and citron kinase, all of which are localized at cleavage furrows. Future studies should examine whether these multiple kinases are redundant or whether they control distinct aspects of cell division.  相似文献   
994.
The acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) on mouse locomotor activity and striatal dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were investigated. A single dose of either MPTP (10-30 mg/kg, i.p.) or MPP+ (5-20 ug/mouse, i.c.v.) decreased locomotor activity 10-40 min after injection: this locomotor effect was significantly suppressed by either pretreatment with nomifensine or 1-deprenyl alone, or by the combination of desmethylimipramine and 6-hydroxydopamine. Pretreatment with clorgyline did not suppress this behavior and a single dose of haloperidol enhanced the effect. The striatal levels of DA, 3-methoxytyramine and 5-HT increased in parallel with the decrease in locomotor activity caused by MPTP or MPP+. In contrast, levels of 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid were decreased by injection of either MPTP or MPP+. Possible mechanism(s) of the behavioral and biochemical changes caused by the acute actions of MPTP and MPP+ with respect to their neurotoxic effects on the nigrostriatal DA system are discussed.  相似文献   
995.
Turner syndrome females (45,X) do not have mental retardation (MR), whereas some mosaic ring X Turner syndrome females, with 45,X/46,X,r(X), have severe MR. The MR is believed to be caused by a failure of X chromosome inactivation (XCI) of the small ring X chromosome, which leads to functional X disomy (FXD), To explore this hypothesis, we examined the proportion of FXD cells in the peripheral blood of four ring X Turner syndrome females with various levels of MR, using two newly developed XCI assays based on DNA methylation of X-linked genes. As a result, the two patients with extremely severe MR showed complete FXD patterns, whereas the remaining two patients with relatively milder MR showed partial FXD patterns. These results indicate that the proportion of FXD cells may be associated with the severity of MR in mosaic ring X Turner syndrome females, although this association should be confirmed by examining brain cells during development. One of the cases with severe MR and a complete FXD pattern neither lacked the XIST gene nor had uniparental X isodisomy, and we discuss the mechanism of the failure of XCI in this case.  相似文献   
996.
BACKGROUND: Bone regeneration therapy using mesenchymal stem cells (MSCs) is beginning to come into clinical use. To overcome the difficulty of healing large bone defects, we previously reported the efficacy of using rat mesenchymal stem cells (rMSCs) carrying a modified adenoviral vector (Adv-F/RGD) with an RGD-containing peptide in the HI loop of the fiber knob domain of adenovirus type 5 (Ad5). METHODS: Firstly, we evaluated the transduction efficiency of Adv-F/RGD into bone-marrow-derived human MSCs (hMSCs) using a beta-galactosidase chemiluminescent assay. Next, we evaluated whether the vector AxCAhBMP2-F/RGD carrying the human bone morphogenetic protein 2 (BMP2) gene could enhance the osteogenic activity of hMSCs in vitro and in vivo (in an ectopic model). In the ectopic model, transduced hMSCs, hMSCs in the presence of recombinant human BMP2 (rhBMP2) or hMSCs alone were implanted into a subcutaneous site of nude mice. We also applied this vector system to an orthotopic model (large bone defect model) using rMSCs. RESULTS: The transduction efficiency of Adv-F/RGD into hMSCs was increased 10-fold over the vector containing the wild-type fiber (Adv-F/wt), as assessed by a beta-galactosidase chemiluminescent assay. AxCAhBMP2-F/RGD increased the osteogenic activity of hMSCs in vitro. In the ectopic model, AxCAhBMP2-F/RGD-transduced hMSCs were found to induce new bone at 1 week after transplantation, and a greater quantity of new bone was formed than in other groups. Similarly, AxCAhBMP2-F/RGD-transduced rMSCs induced a greater quantity of new bone than other groups (AxCAhBMP2-F/wt-transduced rMSCs, rMSCs in the presence of rhBMP2, rMSCs alone, or scaffolds alone) in the orthotopic model. CONCLUSIONS: These data suggest that Adv-F/RGD is useful for introducing foreign genes into MSCs and that it will be a powerful gene therapy tool for bone regeneration and other tissue-engineering applications.  相似文献   
997.
998.
999.
The CMG complex composed of Mcm2-7, Cdc45 and GINS is postulated to be the eukaryotic replicative DNA helicase, whose activation requires sequential recruitment of replication proteins onto Mcm2-7. Current models suggest that Mcm10 is involved in assembly of the CMG complex, and in tethering of DNA polymerase α at replication forks. Here, we report that Mcm10 is required for origin DNA unwinding after association of the CMG components with replication origins in fission yeast. A combination of promoter shut-off and the auxin-inducible protein degradation (off-aid) system efficiently depleted cellular Mcm10 to <0.5% of the wild-type level. Depletion of Mcm10 did not affect origin loading of Mcm2-7, Cdc45 or GINS, but impaired recruitment of RPA and DNA polymerases. Mutations in a conserved zinc finger of Mcm10 abolished RPA loading after recruitment of Mcm10. These results show that Mcm10, together with the CMG components, plays a novel essential role in origin DNA unwinding through its zinc-finger function.  相似文献   
1000.
The genomes of the Tomato mosaic virus and many other plant and animal positive-strand RNA viruses of agronomic and medical importance encode superfamily 1 helicases. Although helicases play important roles in viral replication, the crystal structures of viral superfamily 1 helicases have not been determined. Here, we report the crystal structure of a fragment (S666 to Q1116) of the replication protein from Tomato mosaic virus. The structure reveals a novel N-terminal domain tightly associated with a helicase core. The helicase core contains two RecA-like α/β domains without any of the accessory domain insertions that are found in other superfamily 1 helicases. The N-terminal domain contains a flexible loop, a long α-helix, and an antiparallel six-stranded β-sheet. On the basis of the structure, we constructed deletion mutants of the S666-to-Q1116 fragment and performed split-ubiquitin-based interaction assays in Saccharomyces cerevisiae with TOM1 and ARL8, host proteins that are essential for tomato mosaic virus RNA replication. The results suggested that both TOM1 and ARL8 interact with the long α-helix in the N-terminal domain and that TOM1 also interacts with the helicase core. Prediction of secondary structures in other viral superfamily 1 helicases and comparison of those structures with the S666-to-Q1116 structure suggested that these helicases have a similar fold. Our results provide a structural basis of viral superfamily 1 helicases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号