首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5397篇
  免费   352篇
  2022年   37篇
  2021年   69篇
  2020年   38篇
  2019年   55篇
  2018年   76篇
  2017年   58篇
  2016年   88篇
  2015年   136篇
  2014年   173篇
  2013年   275篇
  2012年   271篇
  2011年   275篇
  2010年   161篇
  2009年   157篇
  2008年   234篇
  2007年   280篇
  2006年   241篇
  2005年   227篇
  2004年   251篇
  2003年   245篇
  2002年   233篇
  2001年   197篇
  2000年   213篇
  1999年   167篇
  1998年   83篇
  1997年   74篇
  1996年   59篇
  1995年   50篇
  1994年   41篇
  1993年   34篇
  1992年   88篇
  1991年   112篇
  1990年   99篇
  1989年   96篇
  1988年   81篇
  1987年   83篇
  1986年   78篇
  1985年   80篇
  1984年   62篇
  1983年   65篇
  1982年   34篇
  1981年   25篇
  1979年   42篇
  1978年   26篇
  1977年   30篇
  1976年   25篇
  1975年   25篇
  1974年   25篇
  1973年   30篇
  1970年   18篇
排序方式: 共有5749条查询结果,搜索用时 31 毫秒
991.
Branching patterns of the trunk lateral line nerves were studied in 46 pleuronectiform species, representing nine families in two suborders. The dorsal fin longitudinal ramus (DFLR), derived from the main nerve (horizontal septum lateral line nerve), passed closely along the course of the middle trunk lateral line in all specimens examined, the dorsal longitudinal collector nerve (DLCN) partly coalescing with the DFLR along the arched part of the lateral line in Psettodes erumei (Psettodoidei), compared with the entire length of the latter in all other species (Pleuronectoidei). Citharidae, Paralichthyidae, and Pleuronectidae were characterized by having a simple, elongated dorsal ramule; Bothidae was unique in having more than one dorsal ramule, forming a ladder-like network and peripherally giving off numerous minute branches; Poecilopsettidae and Samaridae possessed a few, short dorsal ramules; Soleidae and Cynoglossidae were characteristic in having a dendritic dorsal ramule. Secondary modifications of the course of the middle trunk lateral line were detected by nerve information, the arched part of the lateral line having been secondarily highly elevated in some genera of Pleuronectidae, but secondarily straightened in Samaridae.  相似文献   
992.
993.
To enable studies to elucidate the detailed biological function of dysiherbaine and neodysiherbaine A, potent and subunit-selective agonists for ionotropic glutamate receptors, the derivative with a hydroxymethyl substituent at the C10 position has been developed. Preliminary biological evaluation of the analogue showed that a C10 hydroxymethyl substituent produced significant alterations in binding affinities for the ionotropic glutamate receptor subtypes.  相似文献   
994.
A series of benzamidines and benzamides was synthesized as selective inhibitors of vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, and tested for inhibitory activity toward autophosphorylation by the enzyme assay. Selective inhibition of VEGFR-2 tyrosine kinase was observed in the salicylic amide 4e and the anthranilic amidine 5a, and their percent inhibitions of VEGFR-2 tyrosine kinase were 44-60% at a 10 microM concentration of compounds. The salicylic amide 4a showed inhibition of both VEGFR-1 and VEGFR-2 tyrosine kinases at a 10 microM concentration.  相似文献   
995.
The in vitro antimalarial activity of bis-pyridinium salts, N,N'-hexamethylenebis(4-carbamoyl-1-decylpyridinium bromide) and their derivatives, against the Plasmodium falciparum FCR-3 strain (ATCC 30932, chloroquine-sensitive) was evaluated. All test compounds exhibited antimalarial activity over a concentration range of 3.5microM to 10nM. The chain length of the N1-alkyl moiety was found to be very beneficial in terms of antimalarial activity, and in this series of compounds, the most appropriate N1-alkyl chain length was found to be eight.  相似文献   
996.
mRNA localization has an essential role in localizing cytoplasmic determinants, controlling the direction of protein secretion, and allowing the local control of protein synthesis in neurons. In neuronal dendrites, the localization and translocation of mRNA is considered as one of the molecular bases of synaptic plasticity. Recent imaging and functional studies revealed that several RNA-binding proteins form a large messenger ribonucleoprotein (mRNP) complex that is involved in transport and translation of mRNA in dendrites. However, the mechanism of mRNA translocation into dendritic spines is unknown. Here, we show that an actin-based motor, myosin-Va, plays a significant role in mRNP transport in neuronal dendrites and spines. Myosin-Va was Ca2+-dependently associated with TLS, an RNA-binding protein, and its target RNA Nd1-L, an actin stabilizer. A dominant-negative mutant or RNAi of myosin-Va in neurons suppressed TLS accumulation in spines and further impaired TLS dynamics upon activation of mGluRs. The TLS translocation into spines was impeded also in neurons prepared from myosin-Va-null dilute-lethal (dl) mice, which exhibit neurological defects. Our results demonstrate that myosin-Va facilitates the transport of TLS-containing mRNP complexes in spines and may function in synaptic plasticity through Ca2+ signaling.  相似文献   
997.
Apoptosis, a highly conserved form of cell suicide, is regulated by apoptotic signals and their transduction with caspases, a family of cystein proteases. Caspases are constantly expressed in the normal cells as inactive pro-enzymes. The activity of caspase is regulated by the proteolysis. Sequential proteolytic reactions of caspases are needed to execute apoptosis. Mitochondrial pathway is one of these apoptotic signal pathways, in which caspases are oligomerized into characteristic heptamer structure, called apoptosome, with caspase-9 that activate the effector caspases for apoptosis. To investigate the dynamics of signal transduction pathway regulated by oligomerization, we construct a mathematical model for Apaf-1 heptamer assembly process. The model first reveals that intermediate products can remain unconverted even after all assemble reactions are completed. The second result of the model is that the conversion efficiency of Apaf-1 heptamer assembly is maximized when the initial concentration of cytochrome c is equal to that of Apaf-1. When the concentration of cytochrome c is sufficiently larger or smaller than that of Apaf-1, the final Apaf-1 heptamer production is decreased, because intermediate Apaf-1 oligomers (tetramers and bigger oligomers), which themselves are unable to form active heptamer, accumulate too fast in the cells, choking a smooth production of Apaf-1 heptamer. Slow activation of Apaf-1 monomers and small oligomers increase the conversion efficiency. We also study the optimal number of subunits comprising an active oligomer that maximize the conversion efficiency in assembly process, and found that the tetramer is the optimum.  相似文献   
998.
Individual muscle contributions to body segment mechanical energetics and the functional tasks of body support and forward propulsion in walking and running at the same speed were quantified using forward dynamical simulations to elucidate differences in muscle function between the two different gait modes. Simulations that emulated experimentally measured kinesiological data of young adults walking and running at the preferred walk-to-run transition speed revealed that muscles use similar biomechanical mechanisms to provide support and forward propulsion during the two tasks. The primary exception was a decreased contribution of the soleus to forward propulsion in running, which was previously found to be significant in walking. In addition, the soleus distributed its mechanical power differently to individual body segments between the two gait modes from mid- to late stance. In walking, the soleus transferred mechanical energy from the leg to the trunk to provide support, but in running it delivered energy to both the leg and trunk. In running, earlier soleus excitation resulted in it working in synergy with the hip and knee extensors near mid-stance to provide the vertical acceleration for the subsequent flight phase in running. In addition, greater power output was produced by the soleus and hip and knee extensors in running. All other muscle groups distributed mechanical power among the body segments and provided support and forward propulsion in a qualitatively similar manner in both walking and running.  相似文献   
999.
Sasaki K  Ishii N 《PloS one》2010,5(9):e13043
We have previously shown that unloaded shortening velocity (V 0) of human plantar flexors can be determined in vivo, by applying the “slack test” to submaximal voluntary contractions (J Physiol 567:1047–1056, 2005). In the present study, to investigate the effect of motor unit recruitment pattern on V 0 of human muscle, we modified the slack test and applied this method to both voluntary and electrically elicited contractions of dorsiflexors. A series of quick releases (i.e., rapid ankle joint rotation driven by an electrical dynamometer) was applied to voluntarily activated dorsiflexor muscles at three different contraction intensities (15, 50, and 85% of maximal voluntary contraction; MVC). The quick-release trials were also performed on electrically activated dorsiflexor muscles, in which three stimulus conditions were used: submaximal (equal to 15%MVC) 50-Hz stimulation, supramaximal 50-Hz stimulation, and supramaximal 20-Hz stimulation. Modification of the slack test in vivo resulted in good reproducibility of V 0, with an intraclass correlation coefficient of 0.87 (95% confidence interval: 0.68–0.95). Regression analysis showed that V 0 of voluntarily activated dorsiflexor muscles significantly increased with increasing contraction intensity (R 2 = 0.52, P<0.001). By contrast, V 0 of electrically activated dorsiflexor muscles remained unchanged (R 2<0.001, P = 0.98) among three different stimulus conditions showing a large variation of tetanic torque. These results suggest that the recruitment pattern of motor units, which is quite different between voluntary and electrically elicited contractions, plays an important role in determining shortening velocity of human skeletal muscle in vivo.  相似文献   
1000.
Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system by opening ion channels upon the binding of glutamate. Despite the essential roles of glutamate in the control of reproduction and anterior pituitary hormone secretion, there is a limited understanding of how glutamate receptors control ovulation. Here we reveal the function of the ionotropic glutamate receptor AMPA-1 (GRIA1) in ovulation. Based on a genome-wide association study in Bos taurus, we found that ovulation rate is influenced by a variation in the N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain of GRIA1, in which serine is replaced by asparagine. GRIA1(Asn) has a weaker affinity to glutamate than GRIA1(Ser), both in Xenopus oocytes and in the membrane fraction of bovine brain. This single amino acid substitution leads to the decreased release of gonadotropin-releasing hormone (GnRH) in immortalized hypothalamic GT1-7 cells. Cows with GRIA1(Asn) have a slower luteinizing hormone (LH) surge than cows with GRIA1(Ser). In addition, cows with GRIA1(Asn) possess fewer immature ovarian follicles before superovulation and have a lower response to hormone treatment than cows with GRIA1(Ser). Our work identified that GRIA1 is a critical mediator of ovulation and that GRIA1 might be a useful target for reproductive therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号