首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1024篇
  免费   62篇
  1086篇
  2023年   4篇
  2022年   16篇
  2021年   25篇
  2020年   17篇
  2019年   22篇
  2018年   30篇
  2017年   21篇
  2016年   28篇
  2015年   45篇
  2014年   47篇
  2013年   55篇
  2012年   83篇
  2011年   82篇
  2010年   38篇
  2009年   40篇
  2008年   72篇
  2007年   79篇
  2006年   50篇
  2005年   45篇
  2004年   53篇
  2003年   54篇
  2002年   50篇
  2001年   15篇
  2000年   9篇
  1999年   12篇
  1998年   14篇
  1997年   6篇
  1996年   3篇
  1995年   7篇
  1994年   5篇
  1992年   4篇
  1991年   9篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1973年   1篇
  1971年   4篇
  1970年   1篇
  1968年   2篇
  1966年   1篇
排序方式: 共有1086条查询结果,搜索用时 0 毫秒
181.
182.
Holometabolous insects do not excrete but store metabolic wastes during the pupal period. The waste is called meconium and is purged after adult emergence. Although the contents of meconium are well-studied, the developmental and physiological regulation of meconium accumulation is poorly understood. In Bombyx mori, meconium is accumulated in the rectal sac; thereby, the rectal sac distends at the late pupal stage. Here, we show that rectal sac distention occurs between 4 and 5 days after pupation. The distention is halted by brain-removal just after larval-pupal ecdysis but not by brain-removal 1 day after pupation. In the pupae, brain-removal just after ecdysis kept the hemolymph ecdysteroid titer low during early and mid-pupal stages. An injection of 20-hydroxyecdysone (20E) evoked the distention that was halted by brain-removal in a dose-dependent manner. Therefore, brain-removal caused the lack of ecdysteroid, and rectal sac distention did not appear in the brain-removed pupae because of the lack of ecdysteroid. We conclude that rectal sac distention is one of the developmental events regulated by 20E during the pupal period in B. mori.  相似文献   
183.
mRNA localization has an essential role in localizing cytoplasmic determinants, controlling the direction of protein secretion, and allowing the local control of protein synthesis in neurons. In neuronal dendrites, the localization and translocation of mRNA is considered as one of the molecular bases of synaptic plasticity. Recent imaging and functional studies revealed that several RNA-binding proteins form a large messenger ribonucleoprotein (mRNP) complex that is involved in transport and translation of mRNA in dendrites. However, the mechanism of mRNA translocation into dendritic spines is unknown. Here, we show that an actin-based motor, myosin-Va, plays a significant role in mRNP transport in neuronal dendrites and spines. Myosin-Va was Ca2+-dependently associated with TLS, an RNA-binding protein, and its target RNA Nd1-L, an actin stabilizer. A dominant-negative mutant or RNAi of myosin-Va in neurons suppressed TLS accumulation in spines and further impaired TLS dynamics upon activation of mGluRs. The TLS translocation into spines was impeded also in neurons prepared from myosin-Va-null dilute-lethal (dl) mice, which exhibit neurological defects. Our results demonstrate that myosin-Va facilitates the transport of TLS-containing mRNP complexes in spines and may function in synaptic plasticity through Ca2+ signaling.  相似文献   
184.
185.
The polycystic kidney disease 1-like 3 (PKD1L3)-polycystic kidney disease 2-like 1 (PKD2L1) complex functions as a Ca(2+)-permeable, non-selective cation channel that is activated by acid and its subsequent removal; this is called an off-response. In this study, we identified a single aspartic residue in PKD2L1 that is responsible for the Ca(2+) permeation of the PKD1L3/PKD2L1 complex. Calcium imaging analysis using point mutants of negatively charged amino acids present in the putative pore regions of PKD1L3 and PKD2L1 revealed that neutralization of the aspartic residue in PKD2L1 (D523N), which is conserved among PKD2 family members, abolished Ca(2+) permeation, despite robust cell surface expression. In contrast, neutralization of the other negatively charged residues of PKD1L3 (D2049N and E2072Q) and PKD2L1 (D525N and D530N) as well as substitution of Asp(523) with a glutamate residue (D523E) had little effect on Ca(2+) permeation properties. These results demonstrate that Asp(523) in PKD2L1 is a key determinant of Ca(2+) permeation into the PKD1L3/PKD2L1 complex and that PKD2L1 contributes to forming the pore of the PKD1L3/PKD2L1 channel.  相似文献   
186.
Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2–3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.  相似文献   
187.
Ishikita H  Hasegawa K  Noguchi T 《Biochemistry》2011,50(24):5436-5442
The redox potential of the primary quinone Q(A) [E(m)(Q(A))] in photosystem II (PSII) is lowered by replacement of the native plastoquinone (PQ) with bromoxynil (BR) at the secondary quinone Q(B) binding site. Using the BR-bound PSII structure presented in the previous Fourier transform infrared and docking calculation studies, we calculated E(m)(Q(A)) considering both the protein environment in atomic detail and the protonation pattern of the titratable residues. The calculated E(m)(Q(A)) shift in response to the replacement of PQ with deprotonated BR at the Q(B) binding site [ΔE(m)(Q(A))(PQ→BR)] was -55 mV when the three regions, Q(A), the non-heme iron complex, and Q(B) (Q(B) = PQ or BR), were treated as a conjugated supramolecule (Q(A)-Fe-Q(B)). The negative charge of BR apparently contributes to the downshift in ΔE(m)(Q(A))(PQ→BR). This downshift, however, is mostly offset by the influence of the residues near Q(B). The charge delocalization over the Q(A)-Fe-Q(B) complex and the resulting H-bond strength change between Q(A) and D2-His214 are crucial factors that yield a ΔE(m)(Q(A))(PQ→BR) of -55 mV by (i) altering the electrostatic influence of the H-bond donor D2-His214 on E(m)(Q(A)) and (ii) suppressing the proton uptake events of the titratable residues that could otherwise upshift ΔE(m)(Q(A))(PQ→BR) during replacement of PQ with BR at the Q(B) site.  相似文献   
188.
Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors contain cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24+ cells proliferated by asymmetric cell division-like manner. In addition, CD9+ and CD24+ cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.  相似文献   
189.
PURPOSE OF WORK: Soluble protein expression is an important first step during various types of protein studies. Here, we present the screening strategy of secretable mutant. The strategy aimed to identify those cysteine residues that provoke protein misfolding in the heterologous expression system. Intentional mutagenesis studies should consider the size of the library and the time required for expression screening. Here, we proposed a cysteine-to-serine shuffling mutation strategy (CS shuffling) using a Saccharomyces cerevisiae expression system. This strategy of site-directed shuffling mutagenesis of cysteine-to-serine residues aims to identify the cysteine residues that cause protein misfolding in heterologous expression. In the case of a nonglycosylated mutant of the taste-modifying protein miraculin (MCL), which was used here as a model protein, 25% of all constructs obtained from CS shuffling expressed MCL mutant, and serine mutations were found at Cys47 or Cys92, which are involved in the formation of the disulfide bond. This indicates that these residues had the potential to provoke protein misfolding via incorrect disulfide bonding. The CS shuffling can be performed using a small library and within one week, and is an effective screening strategy of soluble protein expression.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号