首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   649篇
  免费   31篇
  2022年   5篇
  2021年   18篇
  2020年   11篇
  2019年   14篇
  2018年   18篇
  2017年   11篇
  2016年   18篇
  2015年   28篇
  2014年   22篇
  2013年   62篇
  2012年   27篇
  2011年   33篇
  2010年   23篇
  2009年   18篇
  2008年   32篇
  2007年   27篇
  2006年   21篇
  2005年   25篇
  2004年   20篇
  2003年   16篇
  2002年   14篇
  2001年   17篇
  2000年   6篇
  1999年   9篇
  1998年   6篇
  1997年   3篇
  1995年   5篇
  1992年   7篇
  1991年   13篇
  1990年   13篇
  1989年   8篇
  1988年   12篇
  1987年   6篇
  1986年   7篇
  1985年   5篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   15篇
  1978年   11篇
  1977年   9篇
  1976年   7篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1967年   2篇
排序方式: 共有680条查询结果,搜索用时 15 毫秒
51.
A system for subculture of spinach (Spinacia oleracea L.) roots was established, and differences in regeneration; namely, embryogenic competence, among individuals of the `Nippon' cultivar were examined. Root tissues, excised from seedlings, were grown on medium without growth regulators and subcultured on the same medium and then on medium that contained 10 M naphthaleneacetic acid and 0.1 M gibberellic acid to induce callus formation. Calli were transferred to medium without growth regulators. All explants formed calli. However, the frequency of embryo formation varied among lines. Higher concentrations of gibberellic acid in the callus-induction medium had limited effects on somatic embryogenesis from poorly embryogenic lines. These results indicate that inherent factors are important for somatic embryogenesis in spinach and that the root subculture system is useful for identifying strongly regenerative genotypes among individuals of a single cultivar.  相似文献   
52.
53.
Several endoplasmic reticulum (ER)-resident proteins contain a unique C-terminal sequence (KDEL) which is required for the retention of these proteins in the ER. By searching a mouse EST database for records containing the nucleotide sequence encoding the KDEL motif, we extracted cDNAs encoding putative novel ER-resident proteins in addition to all of the known ER proteins bearing the KDEL motif. Using the sequence information obtained by this database search, we cloned the cDNA encoding a novel KDEL motif-bearing protein, ER protein 58 (EP58), sharing no significant homology to any of the known ER-resident proteins. Subcellular localization of EP58 in the ER was confirmed by cytoimmunofluorescence studies using epitope-tagged EP58. The EP58 gene was primarily expressed in embryo, placenta, and adult heart. Neither heat shock nor ER stress as tested here was sufficient to induce expression of the EP58 gene. A putative role of the N-terminal half of EP58 in protein-protein interaction is suggested by its similarity to the filamin rod domain. Similarity of the EP58 sequence with bacterial and fungus proteins suggests a possible role for EP58 in polysaccharide biosynthesis.  相似文献   
54.
Recent studies in rodents suggest that maternal immune activation (MIA) by viral infection is associated with schizophrenia and autism in offspring. Although maternal IL-6 is though t to be a possible mediator relating MIA induced these neuropsychiatric disorders, the mechanism remains to be elucidated. Previously, we reported that the maternal leukemia inhibitory factor (LIF)–placental ACTH–fetal LIF signaling relay pathway (maternal–fetal LIF signal relay) promotes neurogenesis of fetal cerebrum in rats. Here we report that the maternal–fetal LIF signal relay in mice is suppressed by injection of polyriboinosinic-polyribocytidylic acid into dams, which induces MIA at 12.5 days post-coitum. Maternal IL-6 levels and gene expression of placental suppressor of cytokine signaling 3 (Socs3) increased according to the severity of MIA and gene expression of placental Socs3 correlated with maternal IL-6 levels. Furthermore, we show that MIA causes reduction of LIF level in the fetal cerebrospinal fluid, resulting in the decreased neurogenesis in the cerebrum. These findings suggest that maternal IL-6 interferes the maternal–fetal LIF signal relay by inducing SOCS3 in the placenta and leads to decreased neurogenesis.  相似文献   
55.
Type 2 diabetes (T2D) occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO) mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.  相似文献   
56.
Previous reports indicate that nuclear factor (NF)-κB regulates induction of human immunodeficiency virus type 1 (HIV-1) gene expression in latently infected cells. However, the role of NF-κB in cells with active HIV-1 replication is not well understood. In this study, we examined the effect of a new NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on HIV-1 replication in a human T cell line and phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PHA-PBMCs). We further explored the mechanism of DHMEQ-mediated inhibition of HIV-1 replication. DHMEQ inhibited HIV-1 replication in HIV-1-infected Molt-4 and PHA-PBMCs. DHMEQ inhibited constitutive NF-κB activity in HIV-1-infected PHA-PBMCs and HIV long terminal repeat promoter activity driven by tumor necrosis factor (TNF)-α and the trans-activator Tat. The single-round assay using vesicular stomatitis virus-pseudotyped virus in the human T cell line M8166 indicated that DHMEQ treatment resulted in decreased integration of HIV-1 provirus into the host genome and decreased HIV-1 expression. These results indicate that NF-κB regulates early events as well as the initial and accelerated expression of HIV-1 in its life cycle. Therefore, we conclude that NF-κB is a molecular target for controlling active HIV-1 replication.  相似文献   
57.
Translation elongation factor G (EF‐G) in bacteria plays two distinct roles in different phases of the translation system. EF‐G catalyses the translocation of tRNAs on the ribosome in the elongation step, as well as the dissociation of the post‐termination state ribosome into two subunits in the recycling step. In contrast to this conventional view, it has very recently been demonstrated that the dual functions of bacterial EF‐G are distributed over two different EF‐G paralogues in human mitochondria. In the present study, we show that the same division of roles of EF‐G is also found in bacteria. Two EF‐G paralogues are found in the spirochaete Borrelia burgdorferi, EF‐G1 and EF‐G2. We demonstrate that EF‐G1 is a translocase, while EF‐G2 is an exclusive recycling factor. We further demonstrate that B. burgdorferi EF‐G2 does not require GTP hydrolysis for ribosome disassembly, provided that translation initiation factor 3 (IF‐3) is present in the reaction. These results indicate that two B. burgdorferi EF‐G paralogues are close relatives to mitochondrial EF‐G paralogues rather than the conventional bacterial EF‐G, in both their phylogenetic and biochemical features.  相似文献   
58.
The hemibiotrophic ascomycete Colletotrichum higginsianum is the casual agent of anthracnose disease of cruciferous plants. High efficiency transformation by Agrobacterium tumefaciens-mediated gene transfer has been established for this fungus. However, targeted gene mutagenesis through homologous recombination rarely occurs in C. higginsianum. We have identified and disrupted the C. higginsianum homologue of the human Ku70 gene, ChKU70, which encodes a protein that plays a role in non-homologous end-joining for repair of DNA breaks. chku70 mutants showed a dramatic increase in the frequency of integration of introduced exogenous DNA fragments by homologous recombination without any detectable phenotypic defects. This result demonstrates that the chku70 mutant is an efficient recipient for targeted gene mutagenesis in C. higginsianum. We have also developed a novel approach [named direct repeat recombination-mediated gene targeting (DRGT)] for targeted gene disruption through Agrobacterium tumefaciens-mediated gene transfer. DRGT utilizes homologous recombination between repeated sequences on the T-DNA flanking a partial fragment of the target gene. Our results suggest that DRGT in the chku70 mutant background could be a useful tool for rapid isolation of targeted gene disruptants in C. higginsianum.  相似文献   
59.
A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid beta-protein (Abeta) in fibrillar form on neuronal cells. However, the role of Abeta fibrils in neuronal dysfunction is highly controversial. This study demonstrates that monosialoganglioside GM1 (GM1) released from damaged neurons catalyzes the formation of Abeta fibrils, the toxicity and the cell affinity of which are much stronger than those of Abeta fibrils formed in phosphate-buffered saline. Abeta-(1-40) was incubated with equimolar GM1 at 37 degrees C. After a lag period of 6-12 h, amyloid fibrils were formed, as confirmed by circular dichroism, thioflavin-T fluorescence, size-exclusion chromatography, and transmission electron microscopy. The fibrils showed significant cytotoxicity against PC12 cells differentiated with nerve growth factor. Trisialoganglioside GT1b also facilitated the fibrillization, although the effect was weaker than that of GM1. Our study suggests an exacerbation mechanism of AD and an importance of polymorphisms in Abeta fibrils during the pathogenesis of the disease.  相似文献   
60.
Reticulocalbin (RCN) is one member of the Ca(2+)-binding proteins in the secretory pathway and is localized in the endoplasmic reticulum. RCN may play a role in the normal behavior and life of cells, although its detailed role remains unknown. Overexpression of RCN may also play a role in tumorigenesis, tumor invasion, and drug resistance. The new antibody for human RCN is used in the distribution of RCN in normal human organs of fetuses and adults with or without inflammation. Immunohistochemical examination demonstrated a broad distribution of RCN in various organs of fetuses and adults, predominantly in the endocrine and exocrine organs. However, RCN expression was heterogeneous in each constituent cell of some organs. Among non-epithelial organs, vascular endothelial cells, testicular germ cells, neurons, and follicular dendritic cells showed strong staining. Plasma cells were the only RCN-positive cells among hematopoietic and lymphoid cells. In inflammatory conditions, RCN expression was enhanced in both epithelial and non-epithelial cells. Heterogeneous expression of RCN indicates that the amount of RCN needed for cell behavior and life may be variable, depending on each cell type and, therefore, RCN may be helpful in establishing the cell origin of neoplasms in some organs. However, further study is needed to establish the significance of RCN in tumorigenesis and in some peculiar features of neoplasms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号