首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   21篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   11篇
  2020年   2篇
  2019年   5篇
  2018年   9篇
  2017年   7篇
  2016年   4篇
  2015年   22篇
  2014年   21篇
  2013年   34篇
  2012年   33篇
  2011年   37篇
  2010年   19篇
  2009年   36篇
  2008年   46篇
  2007年   33篇
  2006年   28篇
  2005年   46篇
  2004年   42篇
  2003年   30篇
  2002年   38篇
  2001年   13篇
  2000年   9篇
  1999年   5篇
  1998年   3篇
  1997年   15篇
  1996年   13篇
  1995年   8篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
排序方式: 共有613条查询结果,搜索用时 15 毫秒
141.
142.
Aspartic proteinases (APs) are involved in several physiological processes in plants, including protein processing, senescence, and stress response and share many structural and functional features with mammalian and microbial APs. The heterodimeric aspartic proteinase A1 from Arabidopsis thaliana (AtAP A1) was the first acid protease identified in this model plant, however, little information exists regarding its structure function characteristics. Circular dichroism analysis indicated that recombinant AtAP A1 contained an higher α-helical content than most APs which was attributed to the presence of a sequence known as the plant specific insert in the mature enzyme. rAtAP A1 was stable over a broad pH range (pH 3–8) with the highest stability at pH 5–6, where 70–80% of the activity was retained after 1 month at 37 °C. Using calorimetry, a melting point of 79.6 °C was observed at pH 5.3. Cleavage profiles of insulin β-chain indicated that the enzyme exhibited a higher specificity as compared to other plant APs, with a high preference for the Leu15–Tyr16 peptide bond. Molecular modeling of AtAP A1 indicated that exposed histidine residues and their interaction with nearby charged groups may explain the pH stability of rAtAP A1.  相似文献   
143.
Oka T  Jigami Y 《The FEBS journal》2006,273(12):2645-2657
UDP-D-glucuronic acid and UDP-D-xylose are required for the biosynthesis of glycosaminoglycan in mammals and of cell wall polysaccharides in plants. Given the importance of these glycans to some organisms, the development of a system for production of UDP-D-glucuronic acid and UDP-D-xylose from a common precursor could prove useful for a number of applications. The budding yeast Saccharomyces cerevisiae lacks an endogenous ability to synthesize or consume UDP-D-glucuronic acid and UDP-D-xylose. However, yeast have a large cytoplasmic pool of UDP-D-glucose that could be used to synthesize cell wall beta-glucan, as a precursor of UDP-D-glucuronic acid and UDP-D-xylose. Thus, if a mechanism for converting the precursors into the end-products can be identified, yeast may be harnessed as a system for production of glycans. Here we report a novel S. cerevisiae strain that coexpresses the Arabidopsis thaliana genes UGD1 and UXS3, which encode a UDP-glucose dehydrogenase (AtUGD1) and a UDP-glucuronic acid decarboxylase (AtUXS3), respectively, which are required for the conversion of UDP-D-glucose to UDP-D-xylose in plants. The recombinant yeast strain was capable of converting UDP-D-glucose to UDP-D-glucuronic acid, and UDP-D-glucuronic acid to UDP-D-xylose, in the cytoplasm, demonstrating the usefulness of this yeast system for the synthesis of glycans. Furthermore, we observed that overexpression of AtUGD1 caused a reduction in the UDP-D-glucose pool, whereas coexpression of AtUXS3 and AtUGD1 did not result in reduction of the UDP-D-glucose pool. Enzymatic analysis of the purified hexamer His-AtUGD1 revealed that AtUGD1 activity is strongly inhibited by UDP-D-xylose, suggesting that AtUGD1 maintains intracellular levels of UDP-D-glucose in cooperation with AtUXS3 via the inhibition of AtUGD1 by UDP-D-xylose.  相似文献   
144.
Various kinds of hormones including insulin, triiodothyronine (T(3)) and fat-soluble vitamins have been proposed as mediators of adipocyte differentiation in mammals. To investigate the factors which are responsible for fish adipocyte differentiation, we developed a serum-free culture system of stromal-vascular cells of red sea bream adipose tissue and examined the effects of bovine insulin, T(3), and fat-soluble vitamins (all-trans retinoic acid, retinyl acetate and 1,25-dihydroxyvitamin D(3)) on the differentiation-linked expression of the lipoprotein lipase (LPL) gene. As assessed by the increase in LPL gene expression after 3 day cultivation, like in mammalian adipocytes, insulin enhanced the adipocyte differentiation in a concentration-dependent manner. During 2 week cultivation, bovine insulin promoted lipid accumulation in differentiating adipocytes concentration-dependently until the terminal differentiation. These results indicate that the differentiation of fish adipocytes is inducible by insulin alone. T(3) alone had no effect but enhanced the differentiation-linked LPL gene expression in the presence of insulin. Fat-soluble vitamins, unlike in mammalian adipocytes, did not show any significant effects. The method developed in this study should be of interest for the characterization of factors involved in fish adipocyte differentiation.  相似文献   
145.
146.
147.
In an attempt to convert an aspartic proteinase into another class of proteinase, the catalytic residues of porcine pepsin were substituted with the catalytic triad characteristic of a serine proteinase, using trypsin as the model. Computer modeling suggested six possible sites within porcine pepsin sequence for the introduction of the catalytic triad. The six mutants of pepsin were subsequently constructed and examined for their catalytic activities. Among the six mutants, two mutants, D32S/I300H/G302D (MutI) and D32G/S35H/Y75S/I120D (MutJ), showed peptide hydrolysis activities. In comparison to the original activity of pepsin, the kinetic constants of these mutants were very low with K(m) values of 4.10 and 2.10mM, and k(0) values of 22.2 and 18.0 min(-1). In the presence of PMSF, a serine proteinase inhibitor, the activities for these mutants were inhibited by 86.5% and 80.1%, respectively, indicating that the catalytic triad of the trypsin had been successfully introduced into porcine pepsin.  相似文献   
148.
Translocated in liposarcoma (TLS) is an important protein component of the heterogeneous nuclear ribonucleoprotein complex involved in the splicing of pre-mRNA and the export of fully processed mRNA to the cytoplasm. We examined the domain organization of human TLS by a combined approach using limited proteolysis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, circular dichroism, inductively coupled plasma atomic emission spectroscopy, and NMR spectroscopy. We found that the RNA recognition motif (RRM) and zinc finger-like domains exclusively form protease-resistant core structures within the isolated TLS protein fragments, while the remaining regions, including the Arg-Gly-Gly repeats, appear to be completely unstructured. Thus, TLS contains the unstructured N-terminal half followed by the RRM and zinc finger-like domains, which are connected to each other by a flexible linker. We also carried out NMR analyses to obtain more detailed insights into the individual RRM and zinc finger-like domains. The 113Cd NMR analysis of the zinc finger-like domain verified that zinc is coordinated with four cysteines in the C4 type scheme. We also investigated the interaction of each domain with an oligo-RNA containing the GGUG sequence, which appears to be critical for the TLS function in splicing. The backbone amide NMR chemical shift perturbation analyses indicated that the zinc finger domain binds GGUG-containing RNA with a dissociation constant of about 1.0 x 10(-5) m, whereas the RRM domain showed no observable interaction with this RNA. This surprising result implies that the zinc finger domain plays a more predominant role in RNA recognition than the RRM domain.  相似文献   
149.
The oxygen affinity of hemoglobin is critical for gas exchange in the lung and O(2) delivery in peripheral tissues. In the present study, we generated model mice that carry low affinity hemoglobin with the Titusville mutation in the alpha-globin gene or Presbyterian mutation in the beta-globin gene. The mutant mice showed increased O(2) consumption and CO(2) production in tissue metabolism, suggesting enhanced O(2) delivery by mutant Hbs. The histology of muscle showed a phenotypical conversion from a fast glycolytic to fast oxidative type. Surprisingly, mutant mice spontaneously ran twice as far as controls despite mild anemia. The oxygen affinity of hemoglobin may control the basal level of erythropoiesis, tissue O(2) consumption, physical activity, and behavior in mice.  相似文献   
150.
Eight functional actin genes are present in ARABIDOPSIS: The functional characterization of these genes in loss-of-function mutants is difficult, because highly conserved isovariants are generally expressed in the same tissue. We isolated a novel semi-dominant mutant allele (act2-2D) of an actin gene, ACT2, with a missense mutation which causes an amino acid substitution at the surface of the ACT2 protein. ACT2 promoter::ACT2-2D transgenic plants showed the same phenotype as act2-2D, indicating that act2-2D is a dominant-negative mutant. act2-2D exhibited defects in the initiation and elongation of root hairs, the elongation of root epidermal cells, and growth in aerial portions. Specifically, radial cell expansion was reduced and occasional cell death occurred in trichoblasts but not in atrichoblasts of the root epidermis. In contrast, cell division patterns in the root meristem were not affected. act2-3, a loss-of-function ACT2 mutant, did not develop most of these morphological abnormalities. Actin filament (F-actin) bundles in root epidermal cells of act2-2D were shorter than in the wild type and in the loss-of-function mutant. We conclude that defective F-actin polymerization caused the aberrant cell morphology in a dominant-negative manner, and that ACT2 functions in cell elongation and root hair formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号