首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   601篇
  免费   19篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   10篇
  2020年   2篇
  2019年   5篇
  2018年   9篇
  2017年   6篇
  2016年   4篇
  2015年   22篇
  2014年   21篇
  2013年   33篇
  2012年   31篇
  2011年   37篇
  2010年   19篇
  2009年   35篇
  2008年   50篇
  2007年   33篇
  2006年   30篇
  2005年   47篇
  2004年   39篇
  2003年   31篇
  2002年   39篇
  2001年   10篇
  2000年   11篇
  1999年   7篇
  1998年   4篇
  1997年   13篇
  1996年   12篇
  1995年   7篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
排序方式: 共有620条查询结果,搜索用时 31 毫秒
71.
To investigate the biological significance of a longevity mutation found in daf-2 of Caenorhabditis elegans, we generated a homologous murine model by replacing Pro-1195 of insulin receptors with Leu using a targeted knock-in strategy. Homozygous mice died in the neonatal stage from diabetic ketoacidosis, whereas heterozygous mice showed the suppressed kinase activity of the insulin receptor but grew normally without spontaneously developing diabetes during adulthood. We examined heterozygous insulin receptor mutant mice for longevity phenotypes. Under 80% oxygen, mutant female mice survived 33.3% longer than wild-type female mice, whereas mutant male mice survived 18.2% longer than wild-type male mice. These results suggested that mutant mice acquired more resistance to oxidative stress, but the benefit of the longevity mutation was more pronounced in females than males. Manganese superoxide dismutase activity in mutant mice was significantly upregulated, suggesting that the suppressed insulin signaling leads to an enhanced antioxidant defense. To analyze the molecular basis of the gender difference, we administered estrogen to mutant mice. It was found that the survival of mice under 80% oxygen was extended when they were administered estradiol. In contrast, mutant and wild-type female mice showed shortened survivals when their ovaries were removed. The influence of estrogen is remarkable in mutant mice compared with wild-type mice, suggesting that estrogen modulates insulin signaling in mutant mice. Furthermore, we showed additional extension of survival under oxidative conditions when their diet was restricted. Collectively, we show that three distinct signals; insulin, estrogen, and dietary signals work in independent and cooperative ways to enhance the resistance to oxidative stress in mice.  相似文献   
72.
Morphological and chemotaxonomic characterization of actinomycete strain TT2-4T isolated from peat swamp forest soil in Pattaloong Province, Thailand, clearly demonstrated that this strain belongs to the genus Micromonospora. 16S rDNA sequence analysis for the strain supported the assignment of the strain to the genus Micromonospora and the similarity value of sequences between this strain and the closely related species, Micromonospora mirobrigensis was 99.1%, and M. carbonacea and M. matsumotoense were 98.8%. The DNA-DNA hybridization result and some physiological and biochemical properties indicated that strain TT2-4T was distinguished from the phylogenetically closest relatives. Based on these genotypic and phenotypic data, strain TT2-4T merits a new species in the genus Micromonospora and the name Micromonospora siamensis sp. nov. is proposed for the strain. The type strain is strain TT2-4T (=JCM 12769T =PCU 266T =TISTR 1554T).  相似文献   
73.
74.
Chondroitin lyases (EC 4.2.2.4 and EC 4.2.2.5) are glycosaminoglycan-degrading enzymes that act as eliminases. Chondroitin lyase AC from Arthrobacter aurescens (ArthroAC) is known to act on chondroitin 4-sulfate and chondroitin 6-sulfate but not on dermatan sulfate. Like other chondroitin AC lyases, it is capable of cleaving hyaluronan. We have determined the three-dimensional crystal structure of ArthroAC in its native form as well as in complex with its substrates (chondroitin 4-sulfate tetrasaccharide, CS(tetra) and hyaluronan tetrasaccharide) at resolution varying from 1.25 A to 1.9A. The primary sequence of ArthroAC has not been previously determined but it was possible to determine the amino acid sequence of this enzyme from the high-resolution electron density maps and to confirm it by mass spectrometry. The enzyme-substrate complexes were obtained by soaking the substrate into the crystals for varying lengths of time (30 seconds to ten hours) and flash-cooling the crystals. The electron density map for crystals soaked in the substrate for as short as 30 seconds showed the substrate clearly and indicated that the ring of central glucuronic acid assumes a distorted boat conformation. This structure strongly supports the lytic mechanism where Tyr242 acts as a general base that abstracts the proton from the C5 position of glucuronic acid while Asn183 and His233 neutralize the charge on the glucuronate acidic group. Comparison of this structure with that of chondroitinase AC from Flavobacterium heparinum (FlavoAC) provides an explanation for the exolytic and endolytic mode of action of ArthroAC and FlavoAC, respectively.  相似文献   
75.

Background and Aims

Aerenchyma provides a low-resistance O2 transport pathway that enhances plant survival during soil flooding. When in flooded soil, soybean produces aerenchyma and hypertrophic stem lenticels. The aims of this study were to investigate O2 dynamics in stem aerenchyma and evaluate O2 supply via stem lenticels to the roots of soybean during soil flooding.

Methods

Oxygen dynamics in aerenchymatous stems were investigated using Clark-type O2 microelectrodes, and O2 transport to roots was evaluated using stable-isotope 18O2 as a tracer, for plants with shoots in air and roots in flooded sand or soil. Short-term experiments also assessed venting of CO2 via the stem lenticels.

Key Results

The radial distribution of the O2 partial pressure (pO2) was stable at 17 kPa in the stem aerenchyma 15 mm below the water level, but rapidly declined to 8 kPa at 200–300 µm inside the stele. Complete submergence of the hypertrophic lenticels at the stem base, with the remainder of the shoot still in air, resulted in gradual declines in pO2 in stem aerenchyma from 17·5 to 7·6 kPa at 13 mm below the water level, and from 14·7 to 6·1 kPa at 51 mm below the water level. Subsequently, re-exposure of the lenticels to air caused pO2 to increase again to 14–17 kPa at both positions within 10 min. After introducing 18O2 gas via the stem lenticels, significant 18O2 enrichment in water extracted from roots after 3 h was confirmed, suggesting that transported O2 sustained root respiration. In contrast, slight 18O2 enrichment was detected 3 h after treatment of stems that lacked aerenchyma and lenticels. Moreover, aerenchyma accelerated venting of CO2 from submerged tissues to the atmosphere.

Conclusions

Hypertrophic lenticels on the stem of soybean, just above the water surface, are entry points for O2, and these connect to aerenchyma and enable O2 transport into roots in flooded soil. Stems that develop aerenchyma thus serve as a ‘snorkel’ that enables O2 movement from air to the submerged roots.  相似文献   
76.
The study of pair-wise interactions between swimming microorganisms is fundamental to the understanding of the rheological and transport properties of semi-dilute suspensions. In this paper, the hydrodynamic interaction of two ciliated microorganisms is investigated numerically using a boundary-element method, and the microorganisms are modeled as spherical squirmers that swim by time-dependent surface deformations. The results show that the inclusion of the unsteady terms in the ciliary propulsion model has a large impact on the trajectories of the interacting cells, and causes a significant change in scattering angles with potential important consequences on the diffusion properties of semi-dilute suspensions. Furthermore, the analysis of the shear stress acting on the surface of the microorganisms revealed that the duration and the intensity of the near-field interaction are significantly modified by the presence of unsteadiness. This observation may account for the hydrodynamic nature of randomness in some biological reactions, and supersedes the distinction between intrinsic randomness and hydrodynamic interactions, adding a further element to the understanding and modeling of interacting microorganisms.  相似文献   
77.
We propose a numerical model of hemodynamics arising from malaria infection. This model is based on a particle method, where all the components of blood are represented by the finite number of particles. A two-dimensional spring network of membrane particles is employed for expressing the deformation of malaria infected red blood cells (IRBCs). Malaria parasite within the IRBC is modeled as a rigid object. This model is applied to the stretching of IRBCs by optical tweezers, the deformation of IRBCs in shear flow, and the occlusion of narrow channels by IRBCs. We also investigate the effects of IRBCs on the rheological property of blood in micro-channels. Our results indicate that apparent viscosity is drastically increased for the period from the ring stage and the trophozoite stage, whereas it is not altered in the early stage of infection.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号