首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   8篇
  134篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   11篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   9篇
  2008年   14篇
  2007年   15篇
  2006年   4篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
  1982年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
61.
tRNA:m5C methyltransferase Trm4 generates the modified nucleotide 5-methylcytidine in archaeal and eukaryotic tRNA molecules, using S-adenosyl-l-methionine (AdoMet) as methyl donor. Most archaea and eukaryotes possess several Trm4 homologs, including those related to diseases, while the archaeon Methanocaldococcus jannaschii has only one gene encoding a Trm4 homolog, MJ0026. The recombinant MJ0026 protein catalyzed AdoMet-dependent methyltransferase activity on tRNA in vitro and was shown to be the M. jannaschii Trm4. We determined the crystal structures of the substrate-free M. jannaschii Trm4 and its complex with sinefungin at 1.27 Å and 2.3 Å resolutions, respectively. This AdoMet analog is bound in a negatively charged pocket near helix α8. This helix can adopt two different conformations, thereby controlling the entry of AdoMet into the active site. Adjacent to the sinefungin-bound pocket, highly conserved residues form a large, positively charged surface, which seems to be suitable for tRNA binding. The structure explains the roles of several conserved residues that were reportedly involved in the enzymatic activity or stability of Trm4p from the yeast Saccharomyces cerevisiae. We also discuss previous genetic and biochemical data on human NSUN2/hTrm4/Misu and archaeal PAB1947 methyltransferase, based on the structure of M. jannaschii Trm4.  相似文献   
62.
Western blotting coupled with immunoprecipitation showed that activin A treatment induced phosphorylation of Smad2 but not complex formation of Smad2/4 in human colon cancer-derived HT-29 cells. Because HT-29 cells expressed neither Smad4 mRNA nor Smad4 protein, it is suggested that deletion of Smad4 leads to a defect of formation of Smad2/4 complex upon activin A stimulation in HT-29 cells.  相似文献   
63.
64.
65.
DNA clones for the beta-class carbonic anhydrase (CA, EC 4.2.1.1) of Helicobactor pylori (hpbetaCA) were obtained. A recombinant hpbetaCA protein lacking the N-terminal 15-amino acid residues was produced and purified, representing a catalytically efficient CA. hpbetaCA was strongly inhibited (K(I)s in the range of 24-45 nM) by many sulfonamides/sulfamates, among which acetazolamide, ethoxzolamide, topiramate, and sulpiride, all clinically used drugs. The dual inhibition of alpha- and/or beta-class CAs of H. pylori might represent a useful alternative for the management of gastritis/gastric ulcers, as well as gastric cancer. This is also the first study showing that a bacterial beta-CA can be a drug target.  相似文献   
66.
A software system, SOSUI, was previously developed for discriminating between soluble and membrane proteins and predicting transmembrane regions (Hirokawa et al., Bioinformatics, 14 (1998) 378-379). The performance of the system was 99% for the discrimination between two types of proteins and 96% for the prediction of transmembrane helices. When all of the amino acid sequences from 15 single-cell organisms were analyzed by SOSUI, the proportion of predicted polytopic membrane proteins showed an almost constant value of 15-20%, irrespective of the total genome size. However, single-cell organisms appeared to be categorized in terms of the preference of the number of transmembrane segments: species with small genomes were characterized by a significant peak at a helix number of approximately six or seven; species with large genomes showed a peak at 10 or 11 helices; and species with intermediate genome sizes showed a monotonous decrease of the population of membrane proteins against the number of transmembrane helices.  相似文献   
67.
Hemagglutinin (HA), a nontoxic component of the botulinum neurotoxin (BoNT) complex, binds to E-cadherin and inhibits E-cadherin-mediated cell–cell adhesion. HA is a 470 kDa protein complex comprising six HA1, three HA2, and three HA3 subcomponents. Thus, to prepare recombinant full-length HA in vitro, it is necessary to reconstitute the macromolecular complex from purified HA subcomponents, which involves multiple purification steps. In this study, we developed NanoHA, a minimal E-cadherin inhibitor protein derived from Clostridium botulinum HA with a simple purification strategy needed for production. NanoHA, containing HA2 and a truncated mutant of HA3 (amino acids 380–626; termed as HA3mini), is a 47 kDa single polypeptide (one-tenth the molecular weight of full-length HA, 470 kDa) engineered with three types of modifications: (i) a short linker sequence between the C terminus of HA2 and N terminus of HA3; (ii) a chimeric complex composed of HA2 derived from the serotype C BoNT complex and HA3mini from the serotype B BoNT complex; and (iii) three amino acid substitutions from hydrophobic to hydrophilic residues on the protein surface. We demonstrated that NanoHA inhibits E-cadherin-mediated cell–cell adhesion of epithelial cells (e.g., Caco-2 and Madin–Darby canine kidney cells) and disrupts their epithelial barrier. Finally, unlike full-length HA, NanoHA can be transported from the basolateral side to adherens junctions via passive diffusion. Overall, these results indicate that the rational design of NanoHA provides a minimal E-cadherin inhibitor with a wide variety of applications as a lead molecule and for further molecular engineering.  相似文献   
68.
Hypoallergenic wheat flour produced by modification with cellulase and actinase showed inhibitory activity against ovalbumin permeation in an in vitro model by using the Caco-2 cell monolayer. The activity was found in the cellulase preparation used for producing the flour. An active compound was isolated by HPLC and identified as Trp-Ser-Asn-Ser-Gly-Asn-Phe-Val-Gly-Gly-Lys by 1H-NMR data and Edman degradation. The undecapeptide, some oligopeptides with the N-terminal sequences and Trp ethyl ester showed activity at 10(-7) M, acetyl Trp being active at 10(-2) M. These data suggest that the Trp residue without a free carboxyl group would be required for the inhibitory activity of ovalbumin absorption through the intestinal tract.  相似文献   
69.

Background

Osteoporosis is the most prevalent skeletal disorder, characterized by a low bone mineral density (BMD) and bone structural deterioration, leading to bone fragility fractures. Accelerated bone resorption by osteoclasts has been established as a principal mechanism in osteoporosis. However, recent experimental evidences suggest that inappropriate apoptosis of osteoblasts/osteocytes accounts for, at least in part, the imbalance in bone remodeling as occurs in osteoporosis. The aim of this study is to examine whether aspirin, which has been reported as an effective drug improving bone mineral density in human epidemiology studies, regulates the balance between bone resorption and bone formation at stem cell levels.

Methods and Findings

We found that T cell-mediated bone marrow mesenchymal stem cell (BMMSC) impairment plays a crucial role in ovariectomized-induced osteoporosis. Ex vivo mechanistic studies revealed that T cell-mediated BMMSC impairment was mainly attributed to the apoptosis of BMMSCs via the Fas/Fas ligand pathway. To explore potential of using pharmacologic stem cell based intervention as an approach for osteoporosis treatment, we selected ovariectomy (OVX)-induced ostoeporosis mouse model to examine feasibility and mechanism of aspirin-mediated therapy for osteoporosis. We found that aspirin can inhibit T cell activation and Fas ligand induced BMMSC apoptosis in vitro. Further, we revealed that aspirin increases osteogenesis of BMMSCs by aiming at telomerase activity and inhibits osteoclast activity in OVX mice, leading to ameliorating bone density.

Conclusion

Our findings have revealed a novel osteoporosis mechanism in which activated T cells induce BMMSC apoptosis via Fas/Fas ligand pathway and suggested that pharmacologic stem cell based intervention by aspirin may be a new alternative in osteoporosis treatment including activated osteoblasts and inhibited osteoclasts.  相似文献   
70.
To determine whether alpha-linked galacto-oligosaccharide (alpha-GOS) prevents allergic peritonitis, BALB/c mice were fed a synthetic diet with and without alpha-GOS supplementation for 7 d, and were then subcutaneously immunized with ovalbumin on days 0 and 7. The mice were challenged by intraperitoneal injection with ovalbumin on day 14, followed by peritoneal lavage on day 15. The total number of peritoneal exudate cells was significantly lower in the mice fed the alpha-GOS diet than in those fed the control diet. Peritoneal lavage fluid from mice fed the alpha-GOS diet not only had less potency to attract peripheral blood leukocytes and peritoneal exudate cells ex vivo, but also had lower concentrations of monocyte chemoattractant protein-1 (MCP-1) and eotaxin. Preincubation of the cells with alpha-GOS failed to affect the migration to peritoneal lavage fluid. We propose that dietary alpha-GOS reduces cell infiltration in allergic peritonitis by reducing antigen-induced elicitation of MCP-1 and eotaxin in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号