全文获取类型
收费全文 | 4143篇 |
免费 | 233篇 |
国内免费 | 1篇 |
专业分类
4377篇 |
出版年
2022年 | 20篇 |
2021年 | 42篇 |
2020年 | 29篇 |
2019年 | 38篇 |
2018年 | 40篇 |
2017年 | 34篇 |
2016年 | 59篇 |
2015年 | 100篇 |
2014年 | 148篇 |
2013年 | 249篇 |
2012年 | 188篇 |
2011年 | 234篇 |
2010年 | 123篇 |
2009年 | 116篇 |
2008年 | 212篇 |
2007年 | 231篇 |
2006年 | 206篇 |
2005年 | 185篇 |
2004年 | 193篇 |
2003年 | 185篇 |
2002年 | 202篇 |
2001年 | 128篇 |
2000年 | 137篇 |
1999年 | 129篇 |
1998年 | 61篇 |
1997年 | 42篇 |
1996年 | 35篇 |
1995年 | 32篇 |
1994年 | 38篇 |
1993年 | 34篇 |
1992年 | 80篇 |
1991年 | 79篇 |
1990年 | 64篇 |
1989年 | 76篇 |
1988年 | 62篇 |
1987年 | 39篇 |
1986年 | 42篇 |
1985年 | 49篇 |
1984年 | 42篇 |
1983年 | 47篇 |
1982年 | 20篇 |
1981年 | 19篇 |
1980年 | 20篇 |
1979年 | 37篇 |
1978年 | 22篇 |
1977年 | 16篇 |
1976年 | 19篇 |
1975年 | 19篇 |
1973年 | 19篇 |
1970年 | 15篇 |
排序方式: 共有4377条查询结果,搜索用时 0 毫秒
91.
The Six1 homeobox gene plays critical roles in vertebrate organogenesis. Mice deficient for Six1 show severe defects in organs such as skeletal muscle, kidney, thymus, sensory organs and ganglia derived from cranial placodes, and mutations in human SIX1 cause branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized by hearing loss and branchial defects. The present study was designed to identify enhancers responsible for the dynamic expression pattern of Six1 during mouse embryogenesis. The results showed distinct enhancer activities of seven conserved non-coding sequences (CNSs) retained in tetrapod Six1 loci. The activities were detected in all cranial placodes (excluding the lens placode), dorsal root ganglia, somites, nephrogenic cord, notochord and cranial mesoderm. The major Six1-expression domains during development were covered by the sum of activities of these enhancers, together with the previously identified enhancer for the pre-placodal region and foregut endoderm. Thus, the eight CNSs identified in a series of our study represent major evolutionarily conserved enhancers responsible for the expression of Six1 in tetrapods. The results also confirmed that chick electroporation is a robust means to decipher regulatory information stored in vertebrate genomes. Mutational analysis of the most conserved placode-specific enhancer, Six1-21, indicated that the enhancer integrates a variety of inputs from Sox, Pax, Fox, Six, Wnt/Lef1 and basic helix-loop-helix proteins. Positive autoregulation of Six1 is achieved through the regulation of Six protein-binding sites. The identified Six1 enhancers provide valuable tools to understand the mechanism of Six1 regulation and to manipulate gene expression in the developing embryo, particularly in the sensory organs. 相似文献
92.
The extracellular carboxymethyl cellulase (CSCMCase) from the yeast, Cryptococcus sp. S-2, was produced when grown on cellobiose. It was purified to homogeneity from the supernatant by ultrafiltration, DEAE-5PW anion exchange column and TSK-Gel G3000SW gel filtration. The purified enzyme was monomeric protein with molecular mass of approximately 34 kDa. The optimum temperature and pH for the action of the enzyme were at 40–50 °C and 3.5, respectively. It was stable at pH range of 5.5–7.5 and retained approximately 50% of its maximum activity after incubating at 90 °C for 1 h. Moreover, it could able to hydrolyze carboxymethyl cellulose sodium salt higher than insoluble cellulose substrate such as Avicel, SIGMACELL® and CM cellulose. Due to its action at acidic pH and moderately stable at high temperature, the gene encoding carboxymethyl cellulase (CSCMCase) was isolated and improved the enzyme yield by high cell-density fermentation of Pichia pastoris. The CSCMCase cDNA contains 1023 nucleotides and encodes a 341-amino acid. It was successfully expressed under the control of alcohol oxidase I promoter using methanol induction of P. pastoris fermentation in a 2L ABLE bioreactor. The production of the recombinant carboxymethyl cellulases was higher than that from Cryptococcus sp. S-2 of 657-fold (2.75 and 4.2 × 10−3 mg protein L−1, respectively) indicating that the leader sequence of CSCMCase has been recognized and processed as efficiently by P. pastoris. Furthermore, the recombinant enzyme was purified in two-step of ultrafiltration and hydrophobic interaction chromatography which would be much more convenient for large-scale purification for successful industrial application. 相似文献
93.
Taku Ozaki Tetsuro Yamashita Sei-ichi Ishiguro 《Archives of biochemistry and biophysics》2011,(2):254
Although mitochondrial μ- and m-calpains play significant roles in apoptotic cell death, their activating mechanisms have not been determined. The purpose of this study was to determine the core factors that are involved in activating mitochondrial outer membrane (OM)-bound calpains. To accomplish this, we solubilized OM-bound calpains and separated them by DEAE-Sepharose column chromatography, and identified them by immunoblots. We also determined the core factors that activated the OM-bound calpains and release them from the OM by calpain assays, immunoprecipitations, and immunoblots. The OM-bound m-calpain large subunit was not associated with the small subunit or with Grp75 chaperone. Free calpain small subunit was located in the IMS and caused the release of the OM-bound m-calpain large subunit from the OM together with Grp75, ATP, and Ca2+. Our results showed that the activating mechanism of mitochondrial OM-bound m-calpain and the release of mitochondrial m-calpain from the OM have important implications in facilitating apoptotic cell death. 相似文献
94.
Watanabe K Shuto T Sato M Onuki K Mizunoe S Suzuki S Sato T Koga T Suico MA Kai H Ikeda T 《Biochemical and biophysical research communications》2011,(1):18-24
The Ganoderma lucidum (G. lucidum) is one of the oriental fungi that has been reported to have immunomodulatory properties. Although effect of β-glucans from G. lucidum has been well documented, little is known about how other major bioactive components, the triterpenes, contribute to the immunomodulatory function of G. lucidum. Here, we showed that triterpenes-rich extract of antlered form of G. lucidum (G. lucidum AF) induces TNFα production in monocytic THP-1 cells. Furthermore, the extract also synergized with lipopolysaccharide (LPS) to induce TNFα production in THP-1 cells, suggesting an immunostimulatory role of triterpenes-rich extract of G. lucidum AF. Notably, the extract enhanced LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), while it suppressed LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK) MAPK. p38 Inhibitor suppressed TNFα production, while JNK inhibitor enhanced TNFα production, implying that synergistic effect of the extract may work by modulating p38 and JNK MAPKs. Moreover, we found that the triterpenes-rich extract of G. lucidum AF contains high amounts of lucidenic acids. Lucidenic acid-A, -F and -D2, which seem to dominantly exist in the extract, were purified from the triterpenes-rich extract. We also identified Lucidenic acid-A and -F as modulators of JNK and p38, respectively. Thus, our data demonstrate that lucidenic acids-rich extract from G. lucidum AF enhances LPS-induced immune responses in monocytic THP-1 cells possibly via the modulation of p38 and JNK MAPKs activation. 相似文献
95.
Shibayama Y Kawachi A Onimaru S Tokunaga J Ikeda R Nishida K Kuchiiwa S Nakagawa S Takamura N Motoya T Takeda Y Yamada K 《Life sciences》2007,81(2):103-108
An herbal health care supplement, St John's Wort (SJW, Hypericum perforatum) has become widely used in the treatment of depression, and is known to interact with therapeutic drugs. Here we report a preventive effect of SJW on cisplatin nephrotoxicity in rats. Rats were given SJW (400 mg/kg/day, p.o.) for 10 consecutive days, and were injected with cisplatin (5 mg/kg, i.v.) on the day after the final SJW treatment. Cisplatin treatment increased the serum creatinine level, which is an index of nephrotoxicity, to 1.51+/-0.22 mg/dl (mean+/-SE) from 0.28+/-0.05 mg/dl (control) on day 5 after the cisplatin injection. This increase fell significantly to 0.86+/-0.13 mg/dl by pre-treatment with SJW. Cisplatin-induced histological abnormality of the kidney was blocked by pre-treatment with SJW. When SJW was administered for 10 days, the amounts of renal metallothionein (MT) and hepatic multidrug resistance protein 2 (Mrp2) were increased to 164.8+/-13.0% and 220.8+/-39.3% (mean+/-SE) of controls, respectively. GSH levels in the kidney and liver were not changed. Total and free cisplatin concentration in serum was not influenced by SJW treatment. In conclusion, the results suggest that pre-treatment with SJW may diminish cisplatin nephrotoxicity. 相似文献
96.
97.
Nishino R Ikeda K Hayakawa T Takahashi T Suzuki T Sato M 《Bioorganic & medicinal chemistry》2011,19(7):2418-2427
Eleven novel sialidase inhibitors 9 and 10 with an N-sulfonylamidino group at the C-4 position of Neu5Ac2en 1 against human parainfluenza virus type 1 (hPIV-1) were synthesized using copper-catalyzed three-component coupling reactions, and their inhibitory activities against hPIV-1 sialidase were studied. 相似文献
98.
Akiba S Kumazawa S Yamaguchi H Hontani N Matsumoto T Ikeda T Oka M Sato T 《Biochimica et biophysica acta》2006,1763(8):797-804
Increases in matrix metalloproteinases (MMPs) at atherosclerotic lesions are involved in the migration of smooth muscle cells (SMCs) into the intima and to the rupture of plaques, being implicated in the progression of atherosclerosis. The present study examined the mechanisms underlying the production of MMP-1, interstitial collagenase-1, induced by oxidized low-density lipoprotein (oxLDL) and 4-hydroxynonenal (4-HNE), factors proposed to play a pivotal role in atherogenesis, in human coronary SMCs. oxLDL promoted the production of MMP-1 with the preceding phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Immunoprecipitation of platelet-derived growth factor receptor beta (PDGFR-beta) revealed that oxLDL induced tyrosine phosphorylation of the receptor. Inhibition of the activation of PDGFR-beta and ERK1/2 resulted in a suppression of the production of MMP-1. Consistently, 4-HNE also elicited the production of MMP-1 with the preceding phosphorylation of PDGFR-beta and ERK1/2. The 4-HNE-induced production of MMP-1 was prevented when the activation of PDGFR-beta and ERK1/2 was inhibited. The present results suggest that the activation of PDGFR-beta and ERK1/2 is involved in the production of MMP-1 in oxLDL- and 4-HNE-stimulated human coronary SMCs. 相似文献
99.
Kataoka M Yamamori S Suzuki E Watanabe S Sato T Miyaoka H Azuma S Ikegami S Kuwahara R Suzuki-Migishima R Nakahara Y Nihonmatsu I Inokuchi K Katoh-Fukui Y Yokoyama M Takahashi M 《PloS one》2011,6(9):e25158
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic protein essential for neurotransmitter release. Previously, we demonstrate that protein kinase C (PKC) phosphorylates Ser(187) of SNAP-25, and enhances neurotransmitter release by recruiting secretory vesicles near to the plasma membrane. As PKC is abundant in the brain and SNAP-25 is essential for synaptic transmission, SNAP-25 phosphorylation is likely to play a crucial role in the central nervous system. We therefore generated a mutant mouse, substituting Ser(187) of SNAP-25 with Ala using "knock-in" technology. The most striking effect of the mutation was observed in their behavior. The homozygous mutant mice froze readily in response to environmental change, and showed strong anxiety-related behavior in general activity and light and dark preference tests. In addition, the mutant mice sometimes exhibited spontaneously occurring convulsive seizures. Microdialysis measurements revealed that serotonin and dopamine release were markedly reduced in amygdala. These results clearly indicate that PKC-dependent SNAP-25 phosphorylation plays a critical role in the regulation of emotional behavior as well as the suppression of epileptic seizures, and the lack of enhancement of monoamine release is one of the possible mechanisms underlying these defects. 相似文献
100.
Isocitrate dehydrogenase kinase/phosphatase 总被引:3,自引:0,他引:3
In Escherichia coli, isocitrate dehydrogenase (IDH) is regulated by phosphorylation. This phosphorylation cycle is catalyzed by an unusual, bifunctional protein:IDH kinase/phosphatase. IDH kinase/phosphatase is expressed from a single gene, aceK, and both activities are catalyzed by the same polypeptide. The amino acid sequence of IDH kinase/phosphatase does not exhibit the characteristics which are typical of other protein kinases, although it does contain a consensus ATP binding site. The available evidence suggests that the IDH kinase and IDH phosphatase reactions occur at the same active site and that the IDH phosphatase reaction results from the back reaction of IDH kinase tightly coupled to ATP hydrolysis. The function of the IDH phosphorylation cycle is to control the flux of isocitrate through the glyoxylate bypass. This pathway is essential for growth on acetate because it prevents the quantitative loss of the acetate carbons as CO2 in the Krebs' cycle. IDH kinase/phosphatase monitors general metabolism by responding to the levels of a wide variety of metabolites, many of which activate IDH phosphatase and inhibit IDH kinase. The ability of IDH kinase/phosphatase to monitor general metabolism allows. the IDH phosphorylation cycle to compensate for substantial perturbations of the system, such as a 15-fold overproduction of IDH. The significance of the cellular level of IDH kinase/phosphatase has also been evaluated. The level of this protein is in great excess of that required for steady-state growth on acetate. In contrast, IDH kinase/phosphatase is, in some cases, rate-limiting for the dephosphorylation of IDH which results when preferred carbon sources are added to cultures growing on acetate. 相似文献