首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   15篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   1篇
  2015年   8篇
  2014年   9篇
  2013年   16篇
  2012年   13篇
  2011年   12篇
  2010年   7篇
  2009年   8篇
  2008年   22篇
  2007年   15篇
  2006年   14篇
  2005年   16篇
  2004年   27篇
  2003年   22篇
  2002年   15篇
  2001年   13篇
  2000年   16篇
  1999年   9篇
  1998年   7篇
  1997年   2篇
  1996年   5篇
  1994年   2篇
  1993年   3篇
  1992年   11篇
  1991年   13篇
  1990年   10篇
  1989年   5篇
  1988年   8篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1965年   1篇
排序方式: 共有354条查询结果,搜索用时 625 毫秒
161.
It remains controversial whether adult pancreatic ducts harbor facultative beta cell progenitors. Because neurogenin3 (Ngn3) is a key determinant of pancreatic endocrine cell neogenesis during embryogenesis, many studies have also relied upon Ngn3 expression as evidence of beta cell neogenesis in adults. Recently, however, Ngn3 as a marker of adult beta cell neogenesis has been called into question by reports of Ngn3 expression in fully-developed beta cells. Nevertheless, direct evidence as to whether Ngn3 activation in adult pancreatic duct cells may lead to duct-to-beta cell transdifferentiation is lacking. Here we studied two models of Ngn3 activation in adult pancreatic duct cells (low-dose alloxan treatment and pancreatic duct ligation) and lineage-traced Ngn3-activated duct cells by labeling them through intraductal infusion with a cell-tagging dye, CFDA-SE No dye-labeled beta cells were found during the follow-up in either model, suggesting that activation of Ngn3 in duct cells is not sufficient to direct their transdifferentiation into beta cells. Therefore, Ngn3 activation in duct cells is not a signature for adult beta cell neogenesis.  相似文献   
162.
BACKGROUND: Prenatal exposure to methylnitrosourea (MNU), an alkylating agent, induces microcephaly in mice. However, its pathogenetic mechanism has not been clarified, especially that in the development of the cerebral cortex. METHODS: ICR mice were treated with MNU at 10 mg/kg intraperitoneally on day 13.5 or 15.5 of gestation, and the embryos were observed histologically 24 hr after treatment with MNU or at term. To clarify the pathogenesis of microcephaly and histological changes, especially apoptosis, neurogenesis, and neural migration/positioning, we performed histological analysis employing a cell‐specific labeling experiment using thymidine‐like substances (BrdU, CldU, and IdU) and markers of neurons/neural stem cells. RESULTS: Histological abnormalities of the dorsal telencephalon, and the excessive cell death of proliferative neural progenitor/stem cells were noted in the MNU‐treated embryos. The highest frequencies of cell death occurred at 36 hr after MNU treatment, and little or no neurogenesis was observed in the ventricular zone of the dorsal telencephalon. Abnormality of the radial migration was caused by the reduction of radial fibers in the radial glias. Birth‐date analysis revealed the abnormal positioning of neurons and aberrant lamination of the cerebral cortex. CONCLUSIONS: Our data suggest that prenatal exposure to MNU induces the excessive cell death of neural precursor/stem cells, and the defective development of the cerebral cortex, resulting in microcephalic abnormalities. Birth Defects Res (Part B) 89:213–222, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
163.
1. Three forms of the Lactobacillus plantarum enzyme D-erythro-dihydroneopterin triphosphate synthetase, the first enzyme in folate biosynthesis, have been demonstrated by polyacrylamide gel electrophoresis. The enzyme forms designated the alpha prime, alpha and beta forms have been shown to be conformers with molecular weights of approx. 200 000. Study of the subunit structure of the beta enzyme species by sodium dodecylsulfate-polyacrylamide gel electrophoresis revealed a single protein with an estimated molecular weight of 20 000 which suggests that the enzyme molecule may be composed of ten polypeptide chains. 2. Of the three conformers only one form, the beta form, appears to be enzymatically active. The two other conformers must undergo conformational changes to the beta species before enzymatic activity can be demonstrated in reaction mixtures containing these enzyme forms. 3. The three enzyme species are interconvertible. The removal of phosphate ions from the enzymatically active beta form results in the formation of two inactive species which suggests that the conformation of the active enzyme is stabilized by non-covalently bound phosphate ions. Conversion of the inactive species to the beta enzyme form may be effected by the readdition of phosphate, substrate or certain nucleotides.  相似文献   
164.
High levels of saturated FAs (SFAs) are acutely toxic to a variety of cell types, including hepatocytes, and have been associated with diseases such as type 2 diabetes and nonalcoholic fatty liver disease. SFA accumulation has been previously shown to degrade endoplasmic reticulum (ER) function leading to other manifestations of the lipoapoptotic cascade. We hypothesized that dysfunctional phospholipid (PL) metabolism is an initiating factor in this ER stress response. Treatment of either primary hepatocytes or H4IIEC3 cells with the SFA palmitate resulted in dramatic dilation of the ER membrane, coinciding with other markers of organelle dysfunction. This was accompanied by increased de novo glycerolipid synthesis, significant elevation of dipalmitoyl phosphatidic acid, diacylglycerol, and total PL content in H4IIEC3 cells. Supplementation with oleate (OA) reversed these markers of palmitate (PA)-induced lipotoxicity. OA/PA cotreatment modulated the distribution of PA between lipid classes, increasing the flux toward triacylglycerols while reducing its incorporation into PLs. Similar trends were demonstrated in both primary hepatocytes and the H4IIEC3 hepatoma cell line. Overall, these findings suggest that modifying the FA composition of structural PLs can protect hepatocytes from PA-induced ER stress and associated lipotoxicity.  相似文献   
165.
Glucose metabolism in Legionella pneumophila was studied by focusing on the Entner-Doudoroff (ED) pathway with a combined genetic and biochemical approach. The bacterium utilized exogenous glucose for synthesis of acid-insoluble cell components but manifested no discernible increase in the growth rate. Assays with permeabilized cell preparations revealed the activities of three enzymes involved in the pathway, i.e., glucokinase, phosphogluconate dehydratase, and 2-dehydro-3-deoxy-phosphogluconate aldolase, presumed to be encoded by the glk, edd, and eda genes, respectively. Gene-disrupted mutants for the three genes and the ywtG gene encoding a putative sugar transporter were devoid of the ability to metabolize exogenous glucose, indicating that the pathway is almost exclusively responsible for glucose metabolism and that the ywtG gene product is the glucose transporter. It was also established that these four genes formed part of an operon in which the gene order was edd-glk-eda-ywtG, as predicted by genomic information. Intriguingly, while the mutants exhibited no appreciable change in growth characteristics in vitro, they were defective in multiplication within eukaryotic cells, strongly indicating that the ED pathway must be functional for the intracellular growth of the bacterium to occur. Curiously, while the deficient glucose metabolism of the ywtG mutant was successfully complemented by the ywtG+ gene supplied in trans via plasmid, its defect in intracellular growth was not. However, the latter defect was also manifested in wild-type cells when a plasmid carrying the mutant ywtG gene was introduced. This phenomenon, resembling so-called dominant negativity, awaits further investigation.The Gram-negative bacterium Legionella pneumophila is a facultative intracellular parasite and a clinically important pathogen of human beings. In the natural habitat, it replicates within free-living amoebae in the environment (6). However, once inhaled into humans as contaminated aerosol, it survives and replicates in alveolar macrophages and causes severe pneumonia, Legionnaires'' disease (13).It is generally believed that L. pneumophila utilizes amino acids as carbon and energy sources while it neither ferments nor oxidizes carbohydrates (7). Thus, the formulation of chemically defined media (8, 18, 22) soon led to the discovery that a certain combination of amino acids is sufficient to support the growth of L. pneumophila (21). Almost at the same time, it was also noted that glutamate serves as the principal energy source (23) whereas glucose has no effect on the growth of the bacterium (18, 22). However, despite this widely held notion, there are a few reports that present evidence that glucose is actually metabolized by L. pneumophila, mainly through the Entner-Doudoroff (ED) and/or pentose phosphate pathway (21, 23). In accordance with these observations, the analysis of the genome structure of the bacterium identified the complete set of genes related to the ED pathway (NC_002942), but the physiological significance of this phenomenon remained unclear. Recently, it has been shown that the expression of the L. pneumophila genes involved in the ED pathway is upregulated within amoebic cells (2). Furthermore, Salmonella enterica serovar Typhimurium, another facultative intracellular pathogen, is known to use gluconate and related carbohydrates by the ED pathway when growing within macrophages (5).In the present work, we tried to clarify the physiological roles of the ED pathway (Fig. (Fig.1A)1A) more fully by genetic means, i.e., the construction and characterization of L. pneumophila mutants in which genes essential to the ED pathway are inactive due to insertion mutations. Our first aim was to estimate the degree to which the pathway contributes to glucose metabolism in the bacterium. The results described here clearly showed that the dependence of glucose metabolism on the pathway was nearly complete, thus excluding the possibility of significant contributions by the glycolytic and pentose phosphate pathways. Our second aim was to know whether an active ED pathway was required for intracellular growth of L. pneumophila, as suggested by data obtained with amebic cells (2). In this respect, our results seem to indicate that the functional ED pathway is actually a requirement.Open in a separate windowFIG. 1.(A) The Entner-Doudoroff pathway. The genes zwf, pgl, edd, glk, and eda encode glucose-6-phosphate dehydrogenase, 6-phosphogluconolactonase, phosphogluconate dehydratase, glucokinase, and 2-dehydro-3-deoxy-phosphogluconate aldolase, respectively. (B) Schematic diagram of the DNA fragments used. The large arrows represent genes relevant to this study; vertical dashed lines, ends of coding regions; inverted triangles, sites for insertion of the Kmr cassette; thick lines, DNA fragments for preparation of gene-disrupted mutants; thin lines, DNA inserts in plasmids pMMB207eda (a) and pMMB207ywtG (b) used in complementation; open circles, DNA segments providing a promoter and a ribosome-binding site; dotted lines, probes for Northern hybridization; thin dotted arrow, cDNA synthesized by RT-PCR with primer RT-0; dashed lines, PCR products made on the RT-PCR product as a template with primers RT1 through RT4. For primers and other details, see Materials and Methods and Table S1 in the supplemental material.  相似文献   
166.
It has been suggested that the Turing reaction-diffusion model on a growing domain is applicable during limb development, but experimental evidence for this hypothesis has been lacking. In the present study, we found that in Doublefoot mutant mice, which have supernumerary digits due to overexpansion of the limb bud, thin digits exist in the proximal part of the hand or foot, which sometimes become normal abruptly at the distal part. We found that exactly the same behaviour can be reproduced by numerical simulation of the simplest possible Turing reaction-diffusion model on a growing domain. We analytically showed that this pattern is related to the saturation of activator kinetics in the model. Furthermore, we showed that a number of experimentally observed phenomena in this system can be explained within the context of a Turing reaction-diffusion model. Finally, we make some experimentally testable predictions.  相似文献   
167.
168.
Extracellular cleavage of virus envelope fusion glycoprotein hemagglutinin (HA0) by host trypsin-like proteases is a prerequisite for the infectivity and pathogenicity of human influenza A viruses and Sendai virus. The common epidemic influenza A viruses are pneumotropic, but occasionally cause encephalopathy or encephalitis, although the HA0 processing enzyme in the brain has not been identified. In searching for the brain processing proteases, we identified a processing enzyme in rat brain that was inducible by infection with these viruses. The purified enzyme exhibited an apparent molecular mass of approximately 22 kDa on SDS-PAGE and the N-terminal amino acid sequence was consistent with that of rat pancreatic trypsin I. Its substrate specificities and inhibition profiles were the same as those of pancreatic trypsin I. In situ hybridization and immunohistochemical studies on trypsin I distribution revealed heavy deposits in the brain capillaries, particularly in the allocortex, as well as in clustered neuronal cells of the hippocampus. The purified enzyme efficiently processed the HA0 of human influenza A virus and the fusion glycoprotein precursor of Sendai virus. Our results suggest that trypsin I in the brain potentiates virus multiplication in the pathogenesis and progression of influenza-associated encephalopathy or encephalitis.  相似文献   
169.
Fibroblast growth factor 15 (Fgf15) is expressed in the developing mouse central nervous system and pharyngeal arches. Fgf15 mutant mice showed defects of the cardiac outflow tract probably because of aberrant behavior of the cardiac neural crest cells. In this study, we examined cis-elements of the Fgf15 gene by transient transgenic analysis using lacZ as a reporter. We identified two enhancers: one directed lacZ expression in the hindbrain/spinal cord and the other in the posterior midbrain (pmb), rhombomere1 (r1) and pharyngeal epithelia. Interestingly, human genomic regions which are highly homologous to these two mouse enhancers showed almost the same enhancer activities as those of mice in transgenic mouse embryos, indicating that the two enhancers are conserved between humans and mice. We also showed that the mouse and human pmb/r1 enhancer can regulate lacZ expression in chick embryos in almost the same way as in mouse embryos. We found that the lacZ expression domain with this enhancer was expanded by ectopic Fgf8b expression, suggesting that this enhancer is regulated by Fgf8 signaling. Moreover, over-expression of Fgf15 resulted in up-regulation of Fgf8 expression in the isthmus/r1. These findings suggest that a reciprocal positive regulation exists between Fgf15 and Fgf8 in the isthmus/r1. Together with cardiac outflow tract defects in Fgf15 mutants, the conservation of enhancers in the hindbrain/spinal cord and pharyngeal epithelia suggests that human FGF19 (ortholog of Fgf15) is involved in early development and the distribution of cardiac neural crest cells and is one of the candidate genes for congenital heart defects.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号