首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   469篇
  免费   44篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   10篇
  2016年   9篇
  2015年   10篇
  2014年   9篇
  2013年   40篇
  2012年   18篇
  2011年   27篇
  2010年   15篇
  2009年   15篇
  2008年   39篇
  2007年   28篇
  2006年   22篇
  2005年   23篇
  2004年   21篇
  2003年   24篇
  2002年   26篇
  2001年   11篇
  2000年   16篇
  1999年   16篇
  1998年   9篇
  1997年   6篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   8篇
  1991年   9篇
  1990年   7篇
  1989年   10篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   7篇
  1974年   2篇
  1972年   1篇
  1968年   1篇
排序方式: 共有513条查询结果,搜索用时 46 毫秒
111.
Summary Phenylalanine Ammonia-Lyase (PAL) containing microorganisms were isolated from a wide variety of natural habitats. The best 21 strains to emerge from the primary screen were screened for PAL activities in both directions using l-phenylalanine and t-cinnamate substrates. Twelve of the latter strains were compared for total cell production and PAL activity and 7 isolates were chosen for examination of the extent of PAL induction in various media. On the basis of these screens, isolate SPA 10 (identified as Rhodotorula rubra) was selected for further optimization. Growth was optimal at 28° C and pH 5.0, although cellular PAL activity was shown to be higher at sub-optimal temperatures (36° C) and pH (8.0) for growth. Synthesis of PAL was repressed when grown in the presence of various sugars and NH 4 + ions. Manipulation of fermentation conditions enabled PAL synthesis to occur at maximum biomass levels, upon glucose exhaustion. PAL was rapidly inactivated within cells shortly after maximum synthesis was attained: feeding of d,l-isoleucine and low concentrations of d,l-phenylalanine, and shifting of fermentation temperature conferred catalyst stability for fermentations over 100 h. These results demonstrate the suitability and superiority of isolate SPA 10 for the commercial production of l-phenylalanine from trans-cinnamic acid.  相似文献   
112.
113.
Evidence suggests that protein misfolding is crucially involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, controversy still exists regarding the involvement of proteasomes or autophagy in ALS due to previous conflicting results. Here, we show that impairment of the ubiquitin-proteasome system, but not the autophagy-lysosome system in motor neurons replicates ALS in mice. Conditional knock-out mice of the proteasome subunit Rpt3 in a motor neuron-specific manner (Rpt3-CKO) showed locomotor dysfunction accompanied by progressive motor neuron loss and gliosis. Moreover, diverse ALS-linked proteins, including TAR DNA-binding protein 43 kDa (TDP-43), fused in sarcoma (FUS), ubiquilin 2, and optineurin were mislocalized or accumulated in motor neurons, together with other typical ALS hallmarks such as basophilic inclusion bodies. On the other hand, motor neuron-specific knock-out of Atg7, a crucial component for the induction of autophagy (Atg7-CKO), only resulted in cytosolic accumulation of ubiquitin and p62, and no TDP-43 or FUS pathologies or motor dysfunction was observed. These results strongly suggest that proteasomes, but not autophagy, fundamentally govern the development of ALS in which TDP-43 and FUS proteinopathy may play a crucial role. Enhancement of proteasome activity may be a promising strategy for the treatment of ALS.  相似文献   
114.
While human cells express potent antiviral proteins as part of the host defense repertoire, viruses have evolved their own arsenal of proteins to antagonize them. BST2 was identified as an inhibitory cellular protein of HIV-1 replication, which tethers virions to the cell surface to prevent their release. On the other hand, the HIV-1 accessory protein, Vpu, has the ability to downregulate and counteract BST2. Vpu also possesses the ability to downmodulate cellular CD4 and SLAMF6 molecules expressed on infected cells. However, the role of Vpu in HIV-1 infection in vivo remains unclear. Here, using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrate that Vpu contributes to the efficient spread of HIV-1 in vivo during the acute phase of infection. Although Vpu did not affect viral cytopathicity, target cell preference, and the level of viral protein expression, the amount of cell-free virions in vpu-deficient HIV-1-infected mice was profoundly lower than that in wild-type HIV-1-infected mice. We provide a novel insight suggesting that Vpu concomitantly downregulates BST2 and CD4, but not SLAMF6, from the surface of infected cells. Furthermore, we show evidence suggesting that BST2 and CD4 impair the production of cell-free infectious virions but do not associate with the efficiency of cell-to-cell HIV-1 transmission. Taken together, our findings suggest that Vpu downmodulates BST2 and CD4 in infected cells and augments the initial burst of HIV-1 replication in vivo. This is the first report demonstrating the role of Vpu in HIV-1 infection in an in vivo model.  相似文献   
115.
The purpose of the current study was to examine the binding of pulmonary surfactant protein A (SP-A) to TLR4 and MD-2, which are critical signaling receptors for lipopolysaccharides (LPSs). The direct binding of SP-A to the recombinant soluble form of extracellular TLR4 domain (sTLR4) and MD-2 was detected using solid-phase binding, immunoprecipitation, and BIAcore. SP-A bound to sTLR4 and MD-2 in a Ca2+-dependent manner, and an anti-SP-A monoclonal antibody whose epitope lies in the region Thr184-Gly194 blocked the SP-A binding to sTLR4 and MD-2, indicating the involvement of the carbohydrate recognition domain (CRD) in the binding. SP-A avidly bound to the deglycosylated forms of sTLR4 and MD-2, suggesting a protein/protein interaction. In addition, SP-A attenuated cell surface binding of smooth LPS and smooth LPS-induced NF-kappaB activation in TLR4/MD-2-expressing cells. To know the role of oligomerization in the interaction of SP-A with TLR4 and MD-2, the collagenase-resistant fragment (CRF), which consisted of CRD plus neck domain of SP-A, was isolated. CRF assembled as a trimer, whereas SP-A assembled as a higher order oligomer. Although CRD was suggested to be involved in the binding, CRF exhibited approximately 600- and 155-fold higher KD for the binding to TLR4 and MD-2, respectively, when compared with SP-A. Consistently significantly higher molar concentrations of CRF were required to inhibit smooth LPS-induced NF-kappaB activation and tumor necrosis factor-alpha secretion. These results demonstrate for the first time the direct interaction between SP-A and TLR4/MD-2 and suggest the importance of supratrimeric oligomerization in the immunomodulatory function of SP-A.  相似文献   
116.
Toll-like receptor 4 (TLR4) is a signaling receptor for lipopolysaccharide (LPS), but its interaction with MD-2 is required for efficient responses to LPS. Previous studies with deletion mutants indicate a critical role of the amino-terminal TLR4 region in interaction with MD-2. However, it is uncertain which region in the TLR4 molecule directly binds to MD-2. The purpose of this study was to determine a critical stretch of primary sequence in the TLR4 region that directly binds MD-2 and is critical for LPS signaling. The synthetic TLR4 peptide corresponding to the TLR4 region Glu(24)-Lys(47) directly binds to recombinant soluble MD-2 (sMD-2). The TLR4 peptide inhibited the binding of a recombinant soluble form of the extracellular TLR4 domain (sTLR4) to sMD-2 and significantly attenuated LPS-induced NF-kappaB activation and IL-8 secretion in wild type TLR4-transfected cells. Reduction and S-carboxymethylation of sTLR4 abrogated its association with sMD-2. The TLR4 mutants, TLR4(C29A), TLR4(C40A), and TLR4(C29A,C40A), were neither co-precipitated with MD-2 nor expressed on the cell surface and failed to transmit LPS signaling. These results demonstrate that the TLR4 region Glu(24)-Lys(47) is a site for MD-2 binding and that Cys(29) and Cys(40) within this region are critical residues for MD-2 binding and LPS signaling.  相似文献   
117.
Chemically synthesized 4-hydroxybenzoate (4HBA) is widely used in the chemical and electrical industries as a material for producing polymers such as those of the liquid crystal type. Its alkyl esters, called parabens, have been the most widely used preservatives by the food and cosmetic industries. We report here for the first time a microorganism, a marine bacterium, which biosynthesizes these petrochemical products. The marine bacterial strain, A4B-17, which was found to belong to the genus Microbulbifer on the basis of its rRNA and gyrB sequences, was isolated from an ascidian in the coastal waters of Palau. Strain A4B-17 was, surprisingly, found to produce 10 mg/liter of 4HBA, together with its butyl (24 mg/liter), heptyl (0.4 mg/liter), and nonyl (6 mg/liter) esters. We therefore characterized 23 other marine bacteria belonging to the genus Microbulbifer, which our institute had previously isolated from various marine environments, and found that these bacteria also produced 4HBA, although with low production levels (less than one-fifth of that produced by A4B-17). We also show that the alkyl esters of 4HBA produced by strain A4B-17 were effective in preventing the growth of yeasts, molds, and gram-positive bacteria.  相似文献   
118.
Zeta-associated protein, 70 kDa (ZAP-70), a spleen tyrosine kinase (Syk) family kinase, is normally expressed on T cells and natural killer cells and plays a crucial role in activation of the T cell immunoresponse. Thus, selective ZAP-70 inhibitors might be useful not only for treating autoimmune diseases, but also for suppressing organ transplant rejection. In our recent study on the synthesis of Syk family kinase inhibitors, we discovered that novel imidazo[1,2-c]pyrimidine-8-carboxamide derivatives possessed potent ZAP-70 inhibitory activity with good selectivity for ZAP-70 over other kinases. In particular, compound 26 showed excellent ZAP-70 kinase inhibition and high selectivity for ZAP-70 over structurally related Syk. The discovery of a potent, highly selective ZAP-70 inhibitor would contribute a new therapeutic tool for autoimmune diseases and organ transplant medication.  相似文献   
119.
A series of (4,4-difluoro-1,2,3,4-tetrahydro-5H-1-benzazepin-5-ylidene)acetamide derivatives was synthesized, and their structure–activity relationships were examined in order to identify potent and selective arginine vasopressin V2 receptor agonists. Attempts to substitute other chemical groups in place of the 2-pyridilmethyl moiety of 1a led to the discovery that potent V2 binding affinity could be obtained with a wide range of functional groups. This structural tolerance allowed for the manipulation of other attributes, such as selectivity against V1a receptor affinity or avoidance of the undesirable inhibition of cytochrome P450 (CYP), without losing potent affinity for the V2 receptor. Some representative compounds obtained in this study were also found to decrease urine volume in awake rats.  相似文献   
120.

Background

Neuroblastoma (NB) is the most frequently occurring solid tumor in children, and shows heterogeneous clinical behavior. Favorable tumors, which are usually detected by mass screening based on increased levels of catecholamines in urine, regress spontaneously via programmed cell death (PCD) or mature through differentiation into benign ganglioneuroma (GN). In contrast, advanced-type NB tumors often grow aggressively, despite intensive chemotherapy. Understanding the molecular mechanisms of PCD during spontaneous regression in favorable NB tumors, as well as identifying genes with a pro-death role, is a matter of urgency for developing novel approaches to the treatment of advanced-type NB tumors.

Principal Findings

We found that the expression of lysosomal associated protein multispanning transmembrane 5 (LAPTM5) was usually down-regulated due to DNA methylation in an NB cell-specific manner, but up-regulated in degenerating NB cells within locally regressing areas of favorable tumors detected by mass-screening. Experiments in vitro showed that not only a restoration of its expression but also the accumulation of LAPTM5 protein, was required to induce non-apoptotic cell death with autophagic vacuoles and lysosomal destabilization with lysosomal-membrane permeabilization (LMP) in a caspase-independent manner. While autophagy is a membrane-trafficking pathway to degrade the proteins in lysosomes, the LAPTM5-mediated lysosomal destabilization with LMP leads to an interruption of autophagic flux, resulting in the accumulation of immature autophagic vacuoles, p62/SQSTM1, and ubiqitinated proteins as substrates of autophagic degradation. In addition, ubiquitin-positive inclusion bodies appeared in degenerating NB cells.

Conclusions

We propose a novel molecular mechanism for PCD with the accumulation of autophagic vacuoles due to LAPTM5-mediated lysosomal destabilization. LAPTM5-induced cell death is lysosomal cell death with impaired autophagy, not cell death by autophagy, so-called autophagic cell death. Thus LAPTM5-mediated PCD is closely associated with the spontaneous regression of NBs and opens new avenues for exploring innovative clinical interventions for this tumor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号