首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   19篇
  2023年   3篇
  2021年   3篇
  2020年   5篇
  2019年   10篇
  2018年   3篇
  2017年   5篇
  2016年   9篇
  2015年   16篇
  2014年   15篇
  2013年   22篇
  2012年   26篇
  2011年   35篇
  2010年   9篇
  2009年   8篇
  2008年   20篇
  2007年   23篇
  2006年   15篇
  2005年   19篇
  2004年   8篇
  2003年   15篇
  2002年   14篇
  2001年   10篇
  2000年   14篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   6篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1985年   3篇
  1984年   5篇
  1978年   8篇
  1977年   3篇
  1976年   7篇
  1974年   5篇
  1973年   3篇
  1972年   4篇
  1971年   1篇
  1969年   2篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1960年   2篇
  1927年   1篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
61.
The hypersensitive response (HR) of plants is one of the earliest responses to prevent pathogen invasion. A brown dot lesion on a leaf is visual evidence of the HR against the blast fungus Magnaporthe oryzae in rice, but tracking the browning process has been difficult. In this study, we induced the HR in rice cultivars harboring the blast resistance gene Pit by inoculation of an incompatible M. oryzae strain, which generated a unique resistance lesion with a brown ring (halo) around the brown fungal penetration site. Inoculation analysis using a plant harboring Pit but lacking an enzyme that catalyzes tryptamine to serotonin showed that high accumulation of the oxidized form of serotonin was the cause of the browning at the halo and penetration site. Our analysis of the halo browning process in the rice leaf revealed that abscisic acid enhanced biosynthesis of serotonin under light conditions, and serotonin changed to the oxidized form via hydrogen peroxide produced by light. The dramatic increase in serotonin, which has a high antioxidant activity, suppressed leaf damage outside the halo, blocked expansion of the browning area and attenuated inhibition of plant growth. These results suggest that serotonin helps to reduce biotic stress in the plant by acting as a scavenger of oxygen radicals to protect uninfected tissues from oxidative damage caused by the HR. The deposition of its oxide at the HR lesion is observed as lesion browning.  相似文献   
62.
We found that species combinations such as Lactobacillus casei subsp. rhamnosus IFO3831 and Saccharomyces cerevisiae Kyokai-10 can form a mixed-species biofilm in coculture. Moreover, the Kyokai-10 yeast strain can form a biofilm in monoculture in the presence of conditioned medium (CM) from L. casei IFO3831. The active substance(s) in bacterial CM is heat sensitive and has a molecular mass of between 3 and 5 kDa. In biofilms from cocultures or CM monocultures, yeast cells had a distinct morphology, with many hill-like protrusions on the cell surface.  相似文献   
63.
64.
Ectopic expression of certain Wnt genes in mouse mammary tissue is tumorigenic, and mutations that stabilize beta-catenin are found in various human cancers including colorectal cancer. To determine the role of stabilized beta-catenin in intestinal tumorigenesis in mice, we constructed by embryonic stem (ES) cell-mediated homologous recombination, a mutant beta-catenin allele whose exon 3 was sandwiched by loxP sequences. When the germline heterozygotes were crossed with mice expressing Cre recombinase in the intestines, the serines and threonine encoded by exon 3 and to be phosphorylated by glycogen synthase kinase 3beta (GSK3beta) were deleted in the offspring intestines, which caused adenomatous intestinal polyps resembling those in Apc(Delta716) knockout mice. Some nascent microadenomas were also found in the colon. These results present experimental genetic evidence that activation of the Wnt signaling pathway can cause intestinal and colonic tumors.  相似文献   
65.

Background  

CD26 is a type II, cell surface glycoprotein known as dipeptidyl peptidase (DPP) IV. Previous studies have revealed CD26 expression in T cell leukemia/lymphoma and malignant mesothelioma, and an inhibitory effect of anti-CD26 monoclonal antibody (mAb) against the growth of CD26+ cancer cells in vitro and in vivo. The function of CD26 in tumor development is unknown and the machinery with which the CD26 mAb induces its anti-tumor effect remains uncharacterized.  相似文献   
66.
67.
Methods with which to simply and rapidly assay l-aspartate (l-Asp) and d-aspartate (d-Asp) would be highly useful for physiological research and for nutritional and clinical analyses. Levels of l- and d-Asp in food and cell extracts are currently determined using high-performance liquid chromatography. However, this method is time-consuming and expensive. Here we describe a simple and specific method for using an l-aspartate dehydrogenase (l-AspDH) system to colorimetrically assay l-Asp and a system of three hyperthermophilic enzymes—aspartate racemase (AspR), l-AspDH, and l-aspartate oxidase (l-AO)—to assay d-Asp. In the former, the reaction rate of nicotinamide adenine dinucleotide (NAD+)-dependent l-AspDH was measured based on increases in the absorbance at 438 nm, reflecting formation of formazan from water-soluble tetrazolium-1 (WST-1), using 1-methoxy-5-methylphenazinum methyl sulfate (mPMS) as a redox mediator. In the latter, d-Asp was measured after first removing l-Asp in the sample solution with l-AO. The remaining d-Asp was then changed to l-Asp using racemase, and the newly formed l-Asp was assayed calorimetrically using NAD+-dependent aspartate dehydrogenase as described above. This method enables simple and rapid spectrophotometric determination of 1 to 100 μM l- and d-Asp in the assay systems. In addition, methods were applicable to the l- and d-Asp determinations in some living cells and foods.  相似文献   
68.
Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors contain cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24+ cells proliferated by asymmetric cell division-like manner. In addition, CD9+ and CD24+ cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.  相似文献   
69.
The canonical Wnt/β-catenin pathway is an essential component of multiple developmental processes. To investigate the role of this pathway in the ectoderm during facial morphogenesis, we generated conditional β-catenin mouse mutants using a novel ectoderm-specific Cre recombinase transgenic line. Our results demonstrate that ablating or stabilizing β-catenin in the embryonic ectoderm causes dramatic changes in facial morphology. There are accompanying alterations in the expression of Fgf8 and Shh, key molecules that establish a signaling center critical for facial patterning, the frontonasal ectodermal zone (FEZ). These data indicate that Wnt/β-catenin signaling within the ectoderm is critical for facial development and further suggest that this pathway is an important mechanism for generating the diverse facial shapes of vertebrates during evolution.  相似文献   
70.
Hematopoietic stem cells (HSCs) reside and self-renew in the bone marrow (BM) niche. Overall, the signaling that regulates stem cell dormancy in the HSC niche remains controversial. Here, we demonstrate that TGF-β type II receptor-deficient HSCs show low-level Smad activation and impaired long-term repopulating activity, underlining the critical role of TGF-β/Smad signaling in HSC maintenance. TGF-β is produced as a latent form by a variety of cells, so we searched for those that express activator molecules for latent TGF-β. Nonmyelinating Schwann cells in BM proved responsible for activation. These glial cells ensheathed autonomic nerves, expressed HSC niche factor genes, and were in contact with a substantial proportion of HSCs. Autonomic nerve denervation reduced the number of these active TGF-β-producing cells and led to rapid loss of HSCs from BM. We propose that glial cells are components of a BM niche and maintain HSC hibernation by regulating activation of latent TGF-β.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号