首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   16篇
  392篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   10篇
  2014年   12篇
  2013年   19篇
  2012年   22篇
  2011年   31篇
  2010年   10篇
  2009年   9篇
  2008年   22篇
  2007年   23篇
  2006年   16篇
  2005年   20篇
  2004年   11篇
  2003年   18篇
  2002年   17篇
  2001年   13篇
  2000年   17篇
  1999年   7篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   9篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1981年   1篇
  1978年   8篇
  1977年   3篇
  1976年   6篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
  1972年   4篇
  1969年   2篇
  1967年   2篇
  1965年   1篇
  1964年   1篇
排序方式: 共有392条查询结果,搜索用时 15 毫秒
61.
62.
63.
Mutations in the Ras family of proteins (predominantly in H-Ras) occur in approximately 40% of urothelial cell carcinoma (UCC). However, relatively little is known about subsequent mutations/pathway alterations that allow tumour progression. Indeed, expressing mutant H-Ras within the mouse bladder does not lead to tumour formation, unless this is expressed at high levels. The Wnt signalling pathway is deregulated in approximately 25% of UCC, so we examined if this correlated with the activation of MAPK signalling in human UCC and found a significant correlation. To test the functional significance of this association we examined the impact of combining Ras mutation (H-RasQ61L or K-RasG12D) with an activating β-catenin mutation within the mouse bladder using Cre-LoxP technology. Although alone, neither Ras mutation nor β-catenin activation led to UCC (within 12 months), mice carrying both mutations rapidly developed UCC. Mechanistically this was associated with reduced levels of p21 with dependence on the MAPK signalling pathway. Moreover, tumours from these mice were sensitive to MEK inhibition. Importantly, in human UCC there was a negative correlation between levels of p-ERK and p21 suggesting that p21 accumulation may block tumour progression following Ras mutation. Taken together these data definitively show Ras pathway activation strongly cooperates with Wnt signalling to drive UCC in vivo.  相似文献   
64.
Toll receptors are cell-surface receptors acting as pattern recognition receptors (PRRs) that are involved in the signaling pathway for innate immunity activation and are genetically conserved from insects to mammals. Tolls from penaeid shrimp are found in white leg shrimp Litopenaeus vannamei (lToll) and black tiger shrimp Penaeus monodon (PmToll). However, the molecular ligand-recognition patterns and identification of these penaeid Toll classes remain unknown. Here, we report cDNA cloning of a new type of Toll receptor gene (MjToll) from kuruma shrimp, Marsupenaeus japonicus, and the modulation of expression by immunostimulation. The full length cDNA of MjToll gene has 3095 nucleotides coding for a putative protein of 1009 amino acids. The MjToll gene is constitutively expressed in the gill, gut, lymphoid organ, heart, hematopoietic organ, hemocyte, ventral abdominal nerve cord, eyestalk neural ganglia and brain tissues. The MjToll gene expression was significantly increased (76-fold) as compared to a control in lymphoid organ stimulated with peptidoglycan at 12h, in vitro. lToll gene showed high similarity to PmToll gene with 96.9% identity; however, MjToll gene exhibited a percentage identity of 59% with that of penaeid Toll homologues. Therefore, this suggests that the identified MjToll gene belongs to the other class of Toll receptors in shrimp.  相似文献   
65.
We have designed a chimeric promoter that can be stimulated by various pro-inflammatory mediators and so drive the expression of therapeutic genes under inflammatory conditions. The promoter has two parts, the [-247/+20] fragment of the human type IIA secreted phospholipase A2 gene promoter, which is stimulated by the pro-inflammatory cytokine interleukin-1beta (IL-1beta), and a double peroxisome proliferator-activated receptor response element that is activated by some eicosanoids and by non-steroidal anti-inflammatory drugs (NSAIDs). Transfection experiments using rabbit articular chondrocytes in primary culture showed that this chimeric promoter produced a low basal activity and was induced by NSAIDs, WY-14643, IL-1beta, and 15-deoxy Delta12,14 prostaglandin J2. The latter two compounds stimulated the promoter synergistically.  相似文献   
66.
67.
Methods with which to simply and rapidly assay l-aspartate (l-Asp) and d-aspartate (d-Asp) would be highly useful for physiological research and for nutritional and clinical analyses. Levels of l- and d-Asp in food and cell extracts are currently determined using high-performance liquid chromatography. However, this method is time-consuming and expensive. Here we describe a simple and specific method for using an l-aspartate dehydrogenase (l-AspDH) system to colorimetrically assay l-Asp and a system of three hyperthermophilic enzymes—aspartate racemase (AspR), l-AspDH, and l-aspartate oxidase (l-AO)—to assay d-Asp. In the former, the reaction rate of nicotinamide adenine dinucleotide (NAD+)-dependent l-AspDH was measured based on increases in the absorbance at 438 nm, reflecting formation of formazan from water-soluble tetrazolium-1 (WST-1), using 1-methoxy-5-methylphenazinum methyl sulfate (mPMS) as a redox mediator. In the latter, d-Asp was measured after first removing l-Asp in the sample solution with l-AO. The remaining d-Asp was then changed to l-Asp using racemase, and the newly formed l-Asp was assayed calorimetrically using NAD+-dependent aspartate dehydrogenase as described above. This method enables simple and rapid spectrophotometric determination of 1 to 100 μM l- and d-Asp in the assay systems. In addition, methods were applicable to the l- and d-Asp determinations in some living cells and foods.  相似文献   
68.
The canonical Wnt/β-catenin pathway is an essential component of multiple developmental processes. To investigate the role of this pathway in the ectoderm during facial morphogenesis, we generated conditional β-catenin mouse mutants using a novel ectoderm-specific Cre recombinase transgenic line. Our results demonstrate that ablating or stabilizing β-catenin in the embryonic ectoderm causes dramatic changes in facial morphology. There are accompanying alterations in the expression of Fgf8 and Shh, key molecules that establish a signaling center critical for facial patterning, the frontonasal ectodermal zone (FEZ). These data indicate that Wnt/β-catenin signaling within the ectoderm is critical for facial development and further suggest that this pathway is an important mechanism for generating the diverse facial shapes of vertebrates during evolution.  相似文献   
69.
Host functions required for replication of microvirid phage G13 DNA were investigated in vivo, using thermosensitive dna mutants of Escherichia coli. In dna+ bacteria, conversion of viral single-stranded DNA into double-stranded replicative form (stage I synthesis) was resistant to 150 microgram/ml of chloramphenicol or 200 microgram/ml of rifampicin. Although multiplication of G13 phage was severely inhibited at 42--43 degrees C even in dna+ host, considerable amount of parental replicative form was synthesized at 43 degrees C in dna+, dnaA or dnaE bacteria. In dnaB and dnaG mutants, however, synthesis of parental replicative form was severely inhibited at the restrictive temperature. Interestingly enough, stage I replication of G13 DNA was, unlike that of phiX174, dependent on host dnaC(D) function. Moreover, the stage I synthesis of G13 DNA in dnaZ was thermosensitive in nutrient broth but not in Tris/casamino acids/glucose medium. In contrast with the stage I replication, synthesis of G13 progeny replicative form was remarkably thermosensitive even in dna+ or dnA cells.  相似文献   
70.
Isl1(+) cardiovascular progenitors and their downstream progeny play a pivotal role in cardiogenesis and lineage diversification of the heart. The mechanisms that control their renewal and differentiation are largely unknown. Herein, we show that the Wnt/beta-catenin pathway is a major component by which cardiac mesenchymal cells modulate the prespecification, renewal, and differentiation of isl1(+) cardiovascular progenitors. This microenvironment can be reconstituted by a Wnt3a-secreting feeder layer with ES cell-derived, embryonic, and postnatal isl1(+) cardiovascular progenitors. In vivo activation of beta-catenin signaling in isl1(+) progenitors of the secondary heart field leads to their massive accumulation, inhibition of differentiation, and outflow tract (OFT) morphogenic defects. In addition, the mitosis rate in OFT myocytes is significantly reduced following beta-catenin deletion in isl1(+) precursors. Agents that manipulate Wnt signals can markedly expand isl1(+) progenitors from human neonatal hearts, a key advance toward the cloning of human isl1(+) heart progenitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号