首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7021篇
  免费   340篇
  国内免费   5篇
  2023年   13篇
  2022年   52篇
  2021年   70篇
  2020年   57篇
  2019年   54篇
  2018年   82篇
  2017年   68篇
  2016年   164篇
  2015年   231篇
  2014年   240篇
  2013年   512篇
  2012年   455篇
  2011年   491篇
  2010年   296篇
  2009年   276篇
  2008年   472篇
  2007年   502篇
  2006年   455篇
  2005年   445篇
  2004年   508篇
  2003年   387篇
  2002年   399篇
  2001年   69篇
  2000年   60篇
  1999年   70篇
  1998年   96篇
  1997年   73篇
  1996年   71篇
  1995年   70篇
  1994年   59篇
  1993年   51篇
  1992年   43篇
  1991年   50篇
  1990年   39篇
  1989年   37篇
  1988年   40篇
  1987年   27篇
  1986年   26篇
  1985年   20篇
  1984年   24篇
  1983年   18篇
  1982年   20篇
  1981年   25篇
  1980年   29篇
  1979年   13篇
  1978年   11篇
  1977年   19篇
  1976年   11篇
  1975年   9篇
  1973年   10篇
排序方式: 共有7366条查询结果,搜索用时 15 毫秒
991.
Cytokinins are phytohormones that play key roles in the maintenance of stem cell activity in plants. Although alternative single-step and two-step activation pathways for cytokinin have been proposed, the significance of the single-step pathway which is catalyzed by LONELY GUY (LOG), is not fully understood. We analyzed the metabolic flow of cytokinin activation in Arabidopsis log multiple mutants using stable isotope-labeled tracers and characterized the mutants' morphological and developmental phenotypes. In tracer experiments, cytokinin activation was inhibited most pronouncedly by log7, while the other log mutations had cumulative effects. Although sextuple or lower-order mutants did not show drastic phenotypes in vegetative growth, the log1log2log3log4log5log7log8 septuple T-DNA insertion mutant in which the LOG-dependent pathway is impaired, displayed severe retardation of shoot and root growth with defects in the maintenance of the apical meristems. Detailed observation of the mutants showed that LOG7 was required for the maintenance of shoot apical meristem size. LOG7 was also suggested to play a role for normal primary root growth together with LOG3 and LOG4. These results suggest a dominant role of the single-step activation pathway mediated by LOGs for cytokinin production, and overlapping but differentiated functions of the members of the LOG gene family in growth and development.  相似文献   
992.
Synthesis and structure-activity relationship of a novel series of isoquinoline CRTH2 receptor antagonists are described. One of the most potent compounds, TASP0376377 (6m), showed not only potent binding affinity (IC(50)=19 nM) but also excellent functional antagonist activity (IC(50)=13 nM). TASP0376377 was tested for its ability of a chemotaxis assay to show the effectiveness (IC(50)=23 nM), which was in good agreement with the CRTH2 antagonist potency. Furthermore, TASP0376377 showed sufficient selectivity for binding to CRTH2 over the DP1 prostanoid receptor (IC(50)>1 μM) and COX-1 and COX-2 enzymes (IC(50)>10 μM).  相似文献   
993.
994.
We examined the relationship between the structures of hetero-/homoleptic ruthenium(II) tris(bipyridine) metal complexes (Ru(II)(bpy)(3)) and their binding properties for α-chymotrypsin (ChT) and cytochrome c (cyt c). Heteroleptic compound 1a binds to both ChT and cyt c in 1:1 ratio, whereas homoleptic 2 forms 1:2 protein complex with ChT but 1:1 complex with cyt c. These results suggest that the structure of the recognition cavity in Ru(II)(bpy)(3) can be designed for shape complementarity to the targeted proteins. In addition, Ru(II)(bpy)(3) complexes were found to be potent inhibitors of cyt c reduction and to permeate A549 cells.  相似文献   
995.
5-Alkenyl or 5-alkynyl-4-anilinopyrimidines were prepared and evaluated for in vitro inhibition of EGFR/Her-2 kinase activity and the growth of tumor cell lines (BT474 and N87). Several of these compounds inhibited the growth of BT474 and N87 at concentrations below 200nM. Structure-activity relationship studies revealed a critical role for the 5-alkynyl moieties. The representative compound 19 exhibited significant antitumor potency in a mouse xenograft model.  相似文献   
996.
Plants under herbivore attack emit mixtures of volatiles (herbivore-induced plant volatiles, HIPVs) that can attract predators of the herbivores. Although the composition of HIPVs should be critical for the attraction, most studies of transgenic plant-emitted volatiles have simply addressed the effect of trans-volatiles without embedding in other endogenous plant volatiles. We investigated the abilities of transgenic wishbone flower plants (Torenia hybrida and Torenia fournieri) infested with spider mites, emitting a trans-volatile ((E)-β-ocimene) in the presence or absence of endogenous volatiles (natural HIPVs and/or floral volatiles), to attract predatory mites (Phytoseiulus persimilis). In both olfactory- and glasshouse-based assays, P. persimilis females were attracted to natural HIPVs from infested wildtype (wt) plants of T. hybrida but not to those of T. fournieri. The trans-volatile enhanced the ability to attract P. persimilis only when added to an active HIPV blend from the infested transgenic T. hybrida plants, in comparison with the attraction by infested wt plants. Intriguingly, floral volatiles abolished the enhanced attractive ability of T. hybrida transformants, although floral volatiles themselves did not elicit any attraction or avoidance behavior. Predator responses to trans-volatiles were found to depend on various background volatiles (e.g. natural HIPVs and floral volatiles) endogenously emitted by the transgenic plants.  相似文献   
997.
Ultrasonographic assessment of fetal growth to estimate fetal weight has been widely used in clinical obstetrics but not in laboratory mice. Even though it is important to assess fetal growth abnormalities for gene-targeting studies using mice, there have been no reports of accurately estimated fetal weight using fetal biometric parameters in mice. The aim of this study was to establish an accurate mouse formula using fetal biometric parameters under ultrasound imaging. Using a high-frequency ultrasound system with a 40 MHz transducer, we measured 293 fetuses of biparietal diameter and mean abdominal diameter from day 12.5 postcoitus (p.c.) until day 18.5 p.c every day. Thirteen algorithms for humans based on head and/or abdominal measurements were assessed. We established an accurate formula based on measurement of the abdomen in Jcl:ICR mice to investigate gestational complications, such as intrauterine growth restriction.  相似文献   
998.
AimsInsulin/insulin-like growth factor-1 (IGF-1) signaling plays an important role in many biological processes. The class IA isoform of phosphoinositide 3-kinase (PI3K) is an important downstream effector of the insulin/IGF-1 signaling pathway. The aim of this study is to examine the effect of persistent activation of PI3K on gene expression and markers of cellular senescence in murine hearts.Main methodsTransgenic mice expressing a constitutively active PI3K in a heart-specific manner were analyzed at the ages of 3 and 20 months. Effects of persistent activation of PI3K on gene expression were comprehensively analyzed using microarrays.Key findingsUpon comprehensive gene expression profiling, the genes whose expression was increased included those for several heat shock chaperons. The amount and nuclear localization of a forkhead box O (FOXO) protein was increased. In addition, the gene expression of insulin receptor substrate-2 decreased, and that of phosphatase and tensin homolog deleted on chromosome ten (PTEN) increased, suggesting that the persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling. The expression of markers of cellular senescence, such as senescence-associated beta-galactosidase activity, cell cycle inhibitors, proinflammatory cytokines, and lipofuscin, did not differ between old wild-type and caPI3K mice.SignificanceThe persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling pathway in a transgenic mouse line. Markers of cellular senescence were not changed in the aged mutant mice.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号