首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7458篇
  免费   367篇
  国内免费   5篇
  2022年   47篇
  2021年   71篇
  2020年   60篇
  2019年   56篇
  2018年   86篇
  2017年   73篇
  2016年   163篇
  2015年   241篇
  2014年   250篇
  2013年   535篇
  2012年   473篇
  2011年   500篇
  2010年   303篇
  2009年   285篇
  2008年   486篇
  2007年   523篇
  2006年   475篇
  2005年   453篇
  2004年   532篇
  2003年   409篇
  2002年   425篇
  2001年   93篇
  2000年   79篇
  1999年   95篇
  1998年   98篇
  1997年   78篇
  1996年   79篇
  1995年   75篇
  1994年   60篇
  1993年   55篇
  1992年   52篇
  1991年   59篇
  1990年   46篇
  1989年   42篇
  1988年   49篇
  1987年   33篇
  1986年   39篇
  1985年   27篇
  1984年   34篇
  1983年   24篇
  1982年   26篇
  1981年   29篇
  1980年   30篇
  1979年   19篇
  1978年   14篇
  1977年   26篇
  1976年   12篇
  1975年   14篇
  1973年   17篇
  1972年   13篇
排序方式: 共有7830条查询结果,搜索用时 31 毫秒
991.
Mesothelioma is a highly malignant tumor with a poor prognosis and limited treatment options. Although cisplatin (CDDP) is an effective anticancer drug, its response rate is only 20%. Therefore, discovery of biomarkers is desirable to distinguish the CDDP-susceptible versus resistant cases. To this end, differential proteome analysis was performed to distinguish between mesothelioma cells of different CDDP susceptibilities, and this revealed that expression of annexin A4 (ANXA4) protein was higher in CDDP-resistant cells than in CDDP-susceptible cells. Furthermore, ANXA4 expression levels were higher in human clinical malignant mesothelioma tissues than in benign mesothelioma and normal mesothelial tissues. Finally, increased susceptibility was observed following gene knockdown of ANXA4 in mesothelioma cells, whereas the opposite effect was observed following transfection of an ANXA4 plasmid. These results suggest that ANXA4 has a regulatory function related to the cisplatin susceptibility of mesothelioma cells and that it could be a biomarker for CDDP susceptibility in pathological diagnoses.  相似文献   
992.
993.
Zinc-finger nucleases (ZFNs) are artificial enzymes that create site-specific double-strand breaks and thereby induce targeted genome editing. Here, we demonstrated successful gene disruption in somatic and germ cells of medaka (Oryzias latipes) using ZFN to target exogenous EGFP genes. Embryos that were injected with an RNA sequence pair coding for ZFNs showed mosaic loss of green fluorescent protein fluorescence in skeletal muscle. A number of mutations that included both deletions and insertions were identified within the ZFN target site in each embryo, whereas no mutations were found at the non-targeted sites. In addition, ZFN-induced mutations were introduced in germ cells and efficiently transmitted to the next generation. The mutation frequency varied (6-100%) in the germ cells from each founder, and a founder carried more than two types of mutation in germ cells. Our results have introduced the possibility of targeted gene disruption and reverse genetics in medaka.  相似文献   
994.
CLP36 is a member of the ALP/Enigma protein family and has been shown to be localized to stress fibers in various cells. We previously reported that depletion of CLP36 caused loss of stress fibers in BeWo choriocarcinoma cells, but it remains unclear how CLP36 contributes to stress fiber formation. In this study, we generated CLP36-depleted F2408 fibroblasts and found that stress fibers showed abnormal non-oriented organization in these cells. In addition to CLP36, F2408 cells contained RIL, another ALP/Enigma protein, and we demonstrated that RIL could compensate for the role of CLP36 in stress fiber formation. CLP36 and RIL form a complex with α-actinin-1 and palladin. We found a strong correlation between loss of CLP36/RIL and failure of α-actinin-1 or palladin to localize on stress fibers. In addition, time lapse observation revealed that incorporation of RIL stabilizes stress fibers and that CLP36 influences the dynamic architecture of these fibers. Our findings indicate that CLP36 and RIL have a redundant role in the formation of stress fibers, but have different effects on stress fiber dynamics in F2408 cells.  相似文献   
995.
996.
Allergen-specific IgE plays an essential role in the pathogenesis of allergic asthma. Although there has been increasing evidence suggesting the involvement of IL-17 in the disease, the relationship between IL-17 and IgE-mediated asthmatic responses has not yet been defined. In this study, we attempted to elucidate the contribution of IL-17 to an IgE-mediated late-phase asthmatic response and airway hyperresponsiveness (AHR). BALB/c mice passively sensitized with an OVA-specific IgE mAb were challenged with OVA intratracheally four times. The fourth challenge caused a late-phase increase in airway resistance associated with elevated levels of IL-17(+)CD4(+) cells in the lungs. Multiple treatments with a C3a receptor antagonist or anti-C3a mAb during the challenges inhibited the increase in IL-17(+)CD4(+) cells. Meanwhile, a single treatment with the antagonist or the mAb at the fourth challenge suppressed the late-phase increase in airway resistance, AHR, and infiltration by neutrophils in bronchoalveolar lavage fluid. Because IL-17 production in the lungs was significantly repressed by both treatments, the effect of an anti-IL-17 mAb was examined. The late-phase increase in airway resistance, AHR, and infiltration by neutrophils in bronchoalveolar lavage fluid was inhibited. Furthermore, an anti-Gr-1 mAb had a similar effect. Collectively, we found that IgE mediated the increase of IL-17(+)CD4(+) cells in the lungs caused by repeated Ag challenges via C3a. The mechanisms leading to the IgE-mediated late-phase asthmatic response and AHR are closely associated with neutrophilic inflammation through the production of IL-17 induced by C3a.  相似文献   
997.
During pregnancy, activation of the maternal immune system results in inflammation in the foetal nervous system. The causative agents are pro-inflammatory cytokines like interleukin-1β (IL-1β), produced by the foetus. In this study, we examine the effect of IL-1β on the proliferation and differentiation of neural progenitor cells (NPCs) to better understand its potential effects on the developing brain. We find that the IL-1β receptor (IL-1R1) is expressed in the ventral mesencephalon of the developing brain. Furthermore, IL-1R1 is expressed on Nestin-positive, Sox-2-positive NPCs. IL-1β treatment reduced the numbers of proliferating NPCs, an effect prevented by the IL-1R1 receptor antagonist. LDH and MTT assays, and western blot analysis for cleaved caspase 3 and poly(ADP-ribose) polymerase, confirmed that this was not due to an increase in cell death but rather an induction of differentiation. To further study the effects of IL-1β on cell fate determination, we differentiated NPCs in the presence and absence of IL-1β. Il-1β promoted gliogenesis and inhibited neurogenesis, an effect that required p38-MAPK kinase signalling. In summary, these data show that exposure of NPCs to IL-1β affects their development. This necessitates an examination of the consequences that maternal immune system activation during pregnancy has on the cellular architecture of the developing brain.  相似文献   
998.
J. Neurochem. (2012) 122, 1047-1053. ABSTRACT: Retinitis pigmentosa is a group of diseases in which one of hundreds of mutations causes death of rod photoreceptor cells and then cones gradually die from oxidative damage. As different mutations cause rod cell death by different mechanisms, mutation-specific treatments are needed. Another approach is to use a neurotrophic factor to promote photoreceptor survival regardless of the mechanism of cell death, and previous studies have demonstrated encouraging short-term results with gene transfer of glial cell line-derived neurotrophic factor (GDNF). We generated rd10 mice with doxycycline-inducible expression of GDNF in photoreceptors (Tet/IRBP/GDNF-rd10 mice) or retinal pigmented epithelial cells (Tet/VMD2/GDNF-rd10 mice). In doxycycline-treated Tet/IRBP/GDNF-rd10 mice, there was a 9.3?×?10(4) -fold increase in Gdnf mRNA at P35 and although it decreased over time, it was still increased by 9.4?×?10(3) -fold at P70. Gdnf mRNA was increased 4.5?×?10(2) -fold in doxycycline-treated Tet/VMD2/GDMF-rd10 mice at P35 and was not significantly decreased at P70. GDNF protein levels were increased about 2.3-fold at P35 and 30% at P70 in Tet/IRBP/GDNF-rd10 mice, and in Tet/VMD2/GDNF-rd10 mice they were increased 30% at P35 and not significantly increased at P70. Despite the difference in expression, Tet/IRBP/GDNF-rd10 and Tet/VMD2/GDNF-rd10 mice had comparable significant increases in outer nuclear layer thickness and mean photopic and scotopic ERG b-wave amplitudes compared with rd10 mice at P35 which decreased, but was still significant at P70. Compared with rd10 mice, Tet/IRBP/GDNF-rd10 and Tet/VMD2/GDNF-rd10 mice had comparable significant improvements in cone density at P50 that decreased, but were still significant at P70. These data indicate that despite a large difference in expression of GDNF, Tet/IRBP/GDNF-rd10 and Tet/VMD2/GDNF-rd10 provide comparable slowing of photoreceptor degeneration, but cannot stop the degeneration.  相似文献   
999.
Glutamate receptor (GluR) δ1 is widely expressed in the developing forebrain, whereas GluRδ2 is selectively expressed in cerebellar Purkinje cells. Recently, we found that trans-synaptic interaction of postsynaptic GluRδ2 and pre-synaptic neurexins (NRXNs) through cerebellin precursor protein (Cbln) 1 mediates excitatory synapse formation in the cerebellum. Thus, a question arises whether GluRδ1 regulates synapse formation in the forebrain. In this study, we showed that the N-terminal domain of GluRδ1 induced inhibitory presynaptic differentiation of some populations of cultured cortical neurons. When Cbln1 or Cbln2 was added to cultures, GluRδ1 expressed in HEK293T cells induced preferentially inhibitory presynaptic differentiation of cultured cortical neurons. The synaptogenic activity of GluRδ1 was suppressed by the addition of the extracellular domain of NRXN1α or NRXN1β containing splice segment 4. Cbln subtypes directly bound to the N-terminal domain of GluRδ1. The synaptogenic activity of GluRδ1 in the presence of Cbln subtypes correlated well with their binding affinities. When transfected to cortical neurons, GluRδ1 stimulated inhibitory synapse formation in the presence of Cbln1 or Cbln2. These results together with differential interactions of Cbln subtypes with NRXN variants suggest that GluRδ1 induces preferentially inhibitory presynaptic differentiation of cortical neurons by interacting with NRXNs containing splice segment 4 through Cbln subtypes.  相似文献   
1000.
The molecular structure of the carotenoid lactoside P457, (3S,5R,6R,3′S,5′R,6′S)‐13′‐cis‐5,6‐epoxy‐3′,5′‐dihydroxy‐3‐(β‐d ‐galactosyl‐(1→4)‐β‐d ‐glucosyl)oxy‐6′,7′‐didehydro‐5,6,7,8,5′,6′‐hexahydro‐β,β‐caroten‐20‐al, was confirmed by spectroscopic methods using Symbiodinium sp. strain NBRC 104787 cells isolated from a sea anemone. Among various algae, cyanobacteria, land plants, and marine invertebrates, the distribution of this unique diglycosyl carotenoid was restricted to free‐living peridinin‐containing dinoflagellates and marine invertebrates that harbor peridinin‐containing zooxanthellae. Neoxanthin appeared to be a common precursor for biosynthesis of peridinin and P457, although neoxanthin was not found in peridinin‐containing dinoflagellates. Fucoxanthin‐containing dinoflagellates did not possess peridinin or P457; green dinoflagellates, which contain chlorophyll a and b, did not contain peridinin, fucoxanthin, or P457; and no unicellular algae containing both peridinin and P457, other than peridinin‐containing dinoflagellates, have been observed. Therefore, the biosynthetic pathways for peridinin and P457 may have been coestablished during the evolution of dinoflagellates after the host heterotrophic eukaryotic microorganism formed a symbiotic association with red alga that does not contain peridinin or P457.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号