首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9348篇
  免费   575篇
  国内免费   5篇
  2023年   12篇
  2022年   48篇
  2021年   91篇
  2020年   66篇
  2019年   70篇
  2018年   115篇
  2017年   84篇
  2016年   178篇
  2015年   270篇
  2014年   278篇
  2013年   618篇
  2012年   541篇
  2011年   589篇
  2010年   368篇
  2009年   338篇
  2008年   593篇
  2007年   596篇
  2006年   560篇
  2005年   547篇
  2004年   626篇
  2003年   499篇
  2002年   490篇
  2001年   150篇
  2000年   183篇
  1999年   158篇
  1998年   140篇
  1997年   109篇
  1996年   99篇
  1995年   100篇
  1994年   91篇
  1993年   91篇
  1992年   134篇
  1991年   126篇
  1990年   112篇
  1989年   100篇
  1988年   110篇
  1987年   66篇
  1986年   69篇
  1985年   74篇
  1984年   60篇
  1983年   49篇
  1982年   32篇
  1981年   43篇
  1980年   43篇
  1979年   31篇
  1978年   24篇
  1977年   36篇
  1976年   23篇
  1975年   13篇
  1973年   18篇
排序方式: 共有9928条查询结果,搜索用时 31 毫秒
951.
952.
The BCNT (Bucentaur) superfamily is classified by an uncharacteristic conserved sequence of ∼80 amino acids (aa) at the C-terminus, BCNT-C (the conserved C-terminal region of Bcnt/Cfdp1). Whereas the yeast Swc5 and Drosophila Yeti homologues play crucial roles in chromatin remodelling organization, mammalian Bcnt/Cfdp1 (craniofacial developmental protein 1) remains poorly understood. The protein, which lacks cysteine, is largely disordered and comprises an acidic N-terminal region, a lysine/glutamic acid/proline-rich 40 aa sequence and BCNT-C. It shows complex mobility on SDS/PAGE at ∼50 kDa, whereas its calculated molecular mass is ∼33 kDa. To characterize this mobility discrepancy and the effects of post-translational modifications (PTMs), we expressed various deleted His–Bcnt in E. coli and HEK cells and found that an acidic stretch in the N-terminal region is a main cause of the gel shift. Exogenous BCNT/CFDP1 constitutively expressed in HEK clones appears as a doublet at 49 and 47 kDa, slower than the protein expressed in Escherichia coli but faster than the endogenous protein on SDS/PAGE. Among seven in vivo phosphorylation sites, Ser250, which resides in a region between disordered and ordered regions in BCNT-C, is heavily phosphorylated and detected predominantly in the 49 kDa band. Together with experiments involving treatment with phosphatases and Ser250 substitutions, the results indicate that the complex behaviour of Bcnt/Cfdp1 on SDS/PAGE is caused mainly by an acidic stretch in the N-terminal region and Ser250 phosphorylation in BCNT-C. Furthermore, Bcnt/Cfdp1 is acetylated in vitro by CREB-binding protein (CBP) and four lysine residues including Lys268 in BCNT-C are also acetylated in vivo, revealing a protein regulated at multiple levels.  相似文献   
953.
In mammalian nucleotide excision repair, the DDB1–DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1–DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.  相似文献   
954.
The inability of molecular detection methods to distinguish disinfected virions from infectious ones has hampered the assessment of infectivity for enteric viruses caused by disinfection practices. In the present study, the reduction of infectivity of murine norovirus S7-PP3 and mengovirus vMC0, surrogates of human noroviruses and enteroviruses, respectively, caused by free-chlorine treatment was characterized culture independently by detecting carbonyl groups on viral capsid protein. The amount of carbonyls on viral capsid protein was evaluated by the proportion of biotinylated virions trapped by avidin-immobilized gel (percent adsorbed). This culture-independent approach demonstrated that the percent adsorbed was significantly correlated with the logarithm of the infectious titer of tested viruses. Taken together with the results of previous reports, the result obtained in this study indicates that the amount of carbonyls on viral capsid protein of four important families of waterborne pathogenic viruses, Astroviridae, Reoviridae, Caliciviridae, and Picornaviridae, is increased in proportion to the received oxidative stress of free chlorine. There was also a significant correlation between the percent adsorbed and the logarithm of the ratio of genome copy number to PFU, which enables estimation of the infectious titer of a subject virus by measuring values of the total genome copy number and the percent adsorbed. The proposed method is applicable when the validation of a 4-log reduction of viruses, a requirement in U.S. EPA guidelines for virus removal from water, is needed along with clear evidence of the oxidation of virus particles with chlorine-based disinfectants.  相似文献   
955.
Antibiotics have either bactericidal or bacteriostatic activity. However, they also induce considerable gene expression in bacteria when used at subinhibitory concentrations (below the MIC). We found that lincomycin, which inhibits protein synthesis by binding to the ribosomes of Gram-positive bacteria, was effective for inducing the expression of genes involved in secondary metabolism in Streptomyces strains when added to medium at subinhibitory concentrations. In Streptomyces coelicolor A3(2), lincomycin at 1/10 of its MIC markedly increased the expression of the pathway-specific regulatory gene actII-ORF4 in the blue-pigmented antibiotic actinorhodin (ACT) biosynthetic gene cluster, which resulted in ACT overproduction. Intriguingly, S. lividans 1326 grown in the presence of lincomycin at a subinhibitory concentration (1/12 or 1/3 of its MIC) produced abundant antibacterial compounds that were not detected in cells grown in lincomycin-free medium. Bioassay and mass spectrometry analysis revealed that some antibacterial compounds were novel congeners of calcium-dependent antibiotics. Our results indicate that lincomycin at subinhibitory concentrations potentiates the production of secondary metabolites in Streptomyces strains and suggest that activating these strains by utilizing the dose-response effects of lincomycin could be used to effectively induce the production of cryptic secondary metabolites. In addition to these findings, we also report that lincomycin used at concentrations for markedly increased ACT production resulted in alteration of the cytoplasmic protein (FoF1 ATP synthase α and β subunits, etc.) profile and increased intracellular ATP levels. A fundamental mechanism for these unique phenomena is also discussed.  相似文献   
956.
Enterococcus faecalis F4-9 isolated from Egyptian salted-fermented fish produces a novel bacteriocin, termed enterocin F4-9. Enterocin F4-9 was purified from the culture supernatant by three steps, and its molecular mass was determined to be 5,516.6 Da by mass spectrometry. Amino acid and DNA sequencing showed that the propeptide consists of 67 amino acid residues, with a leader peptide containing a double glycine cleavage site to produce a 47-amino-acid mature peptide. Enterocin F4-9 is modified by two molecules of N-acetylglucosamine β-O-linked to Ser37 and Thr46. The O-linked N-acetylglucosamine moieties are essential for the antimicrobial activity of enterocin F4-9. Further analysis of the enterocin F4-9 gene cluster identified enfC, which has high sequence similarity to a glycosyltransferase. The antimicrobial activity of enterocin F4-9 covered a limited range of bacteria, including, interestingly, a Gram-negative strain, Escherichia coli JM109. Enterocin F4-9 is sensitive to protease, active at a wide pH range, and moderately resistant to heat.  相似文献   
957.
958.
959.
Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci.  相似文献   
960.
Phytosterols are classified into C24‐ethylsterols and C24‐methylsterols according to the different C24‐alkylation levels conferred by two types of sterol methyltransferases (SMTs). The first type of SMT (SMT1) is widely conserved, whereas the second type (SMT2) has diverged in charophytes and land plants. The Arabidopsis smt2 smt3 mutant is defective in the SMT2 step, leading to deficiency in C24‐ethylsterols while the C24‐methylsterol pathway is unchanged. smt2 smt3 plants exhibit severe dwarfism and abnormal development throughout their life cycle, with irregular cell division followed by collapsed cell files. Preprophase bands are occasionally formed in perpendicular directions in adjacent cells, and abnormal phragmoplasts with mislocalized KNOLLE syntaxin and tubulin are observed. Defects in auxin‐dependent processes are exemplified by mislocalizations of the PIN2 auxin efflux carrier due to disrupted cell division and failure to distribute PIN2 asymmetrically after cytokinesis. Although endocytosis of PIN2–GFP from the plasma membrane (PM) is apparently unaffected in smt2 smt3, strong inhibition of the endocytic recycling is associated with a remarkable reduction in the level of PIN2–GFP on the PM. Aberrant localization of the cytoplasmic linker associated protein (CLASP) and microtubules is implicated in the disrupted endocytic recycling in smt2 smt3. Exogenous C24‐ethylsterols partially recover lateral root development and auxin distribution in smt2 smt3 roots. These results indicate that C24‐ethylsterols play a crucial role in division plane determination, directional auxin transport, and polar growth. It is proposed that the divergence of SMT2 genes together with the ability to produce C24‐ethylsterols were critical events to achieve polarized growth in the plant lineage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号