首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9924篇
  免费   609篇
  国内免费   7篇
  2022年   65篇
  2021年   93篇
  2020年   77篇
  2019年   76篇
  2018年   105篇
  2017年   94篇
  2016年   207篇
  2015年   291篇
  2014年   304篇
  2013年   662篇
  2012年   580篇
  2011年   610篇
  2010年   378篇
  2009年   352篇
  2008年   607篇
  2007年   629篇
  2006年   584篇
  2005年   564篇
  2004年   640篇
  2003年   495篇
  2002年   507篇
  2001年   172篇
  2000年   181篇
  1999年   157篇
  1998年   130篇
  1997年   114篇
  1996年   106篇
  1995年   115篇
  1994年   90篇
  1993年   90篇
  1992年   121篇
  1991年   123篇
  1990年   92篇
  1989年   104篇
  1988年   108篇
  1987年   74篇
  1986年   69篇
  1985年   72篇
  1984年   63篇
  1983年   49篇
  1982年   52篇
  1981年   47篇
  1980年   50篇
  1979年   56篇
  1978年   36篇
  1977年   55篇
  1976年   37篇
  1974年   33篇
  1973年   33篇
  1969年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
871.
Ultrastructural and molecular phylogenetic evidence indicate that the Parabasalia consists of seven main subgroups: the Trichomonadida, Honigbergiellida, Hypotrichomonadida, Tritrichomonadida, Cristamonadida, Spirotrichonymphida, and Trichonymphida. Only five species of free-living parabasalids are known: Monotrichomonas carabina, Ditrichomonas honigbergii, Honigbergiella sp., Tetratrichomonas undula, and Pseudotrichomonas keilini. Phylogenetic analyses show that free-living species do not form a clade and instead branch in several different positions within the context of their parasitic relatives. Because the diversity of free-living parabasalids is poorly understood, the systematics of these lineages is in a significant state of disarray. In order to better understand the phylogenetic distribution of free-living parabasalids, we sequenced the small subunit rDNA from three different strains reminiscent of P. keilini; the strains were isolated from different geographical locations: (1) mangrove sediments in Japan and (2) sediments in Cyprus. These data demonstrated that the free-living parabasalids P. keilini and Lacusteria cypriaca n. g., n. sp., form a paraphyletic assemblage near the origin of a clade consisting mostly of parasitic trichomonadids (e.g. Trichomonas vaginalis). This paraphyletic distribution of similar morphotypes indicates that free-living trichomonadids represent a compelling example of morphostasis that provides insight into the suite of features present in the most recent free-living ancestor of their parasitic relatives.  相似文献   
872.
873.
Light climates strongly influence plant architecture and mass allocation. Using the metamer concept, we quantitatively described branching architecture and growth of Chenopodium album plants grown solitarily or in a dense stand. Metamer is a unit of plant construction that is composed of an internode and the upper node with a leaf and a subtended axillary bud. The number of metamers on the main-axis stem increased with plant growth, but did not differ between solitary and dense-stand plants. Solitary plants had shorter thicker internodes with branches larger in size and number than the plant in the dense stand. Leaf area on the main stem was not different. Larger leaf area in solitary plants was due to a larger number of leaves on branches. Leaf mass per area (LMA) was higher in solitary plants. It did not significantly differ between the main axis and branches in solitary plants, whereas in the dense stand it was smaller on branches. Dry mass was allocated most to leaves in solitary plants and to stems in the dense stand in vegetative growth. Reproductive allocation was not significantly different. Branch/main stem mass ratio was higher in solitary than dense-stand plants, and leaf/stem mass ratio higher in branches than in the main axis. Nitrogen use efficiency (NUE) (dry mass growth per unit N uptake) was higher and light use efficiency (LUE) (dry mass growth per unit light interception) was lower in the plant grown solitarily than in the dense stand.  相似文献   
874.
875.
An aspartic protease that is significantly produced by baculovirus-infected Spodoptera frugiperda Sf9 insect cells was purified to homogeneity from a growth medium. To monitor aspartic protease activity, an internally quenched fluoresce (IQF) substrate specific to cathepsin D was used. The purified aspartic protease showed a single protein band on SDS-PAGE with an apparent molecular mass of 40 kDa. The N-terminal amino acid sequence of the enzyme had a high homology to a Bombyx mori aspartic protease. The enzyme showed greatest affinity for the IQF substrate at pH 3.0 with a K(m) of 0.85 μM. The k(cat) and k(cat)/K(m) values were 13 s(-1) and 15 s(-1) μM(-1) respectively. Pepstatin A proved to be a potent competitive inhibitor with inhibitor constant, K(i), of 25 pM.  相似文献   
876.
We analyzed the binding of the 7C8 antibody to the chloramphenicol phosphonate antigens—one containing a trifluoroacetyl group (CP‐F) and the other containing an acetyl group (CP‐H)—by using isothermal titration calorimetry (ITC). The thermodynamic difference due to the substitution of F by H was evaluated using free energy calculations based on molecular dynamics (MD) simulations. We have previously shown that another antibody, namely, 6D9, binds more weakly to CP‐H than to CP‐F, mainly due to the different hydration free energies of the dissociated state and not due to the unfavorable hydrophobic interactions with the antibody in the bound state. Unlike in the binding of the trifluoroacetyl group with 6D9, in its binding with 7C8, it is exposed to the solvent, as seen in the crystal structure of the complex of 7C8 with CP‐F. The thermodynamic analysis performed in this study showed that the binding affinity of 7C8 for CP‐H is similar to that for CP‐F, but this binding to CP‐H is accompanied with less favorable enthalpy and more favorable entropy changes. The free energy calculations indicated that, upon the substitution of F by H, enthalpy and entropy changes in the associated and dissociated states were decreased, but the magnitude of enthalpy and entropy changes in the dissociated state was larger than that in the associated state. The differences in binding free energy, enthalpy, and entropy changes determined by the free energy calculations for the substitution of F by H are in good agreement with the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
877.
The creation of transgenic plants has contributed extensively to the advancement of plant science. Establishing homozygous transgenic lines is time‐consuming and laborious, and using antibiotics or herbicides to select transformed plants may adversely affect the growth of some transgenic plants. Here we describe a novel technology, which we have named FAST (fluorescence‐accumulating seed technology), that overcomes these difficulties. Although this technology was designed for use in Arabidopsis thaliana, it may be adapted for use in other plants. The technology is based on the expression of a fluorescent co‐dominant screenable marker FAST, under the control of a seed‐specific promoter, on the oil body membrane. The FAST marker harbors a fusion gene encoding either GFP or RFP with an oil body membrane protein that is prominent in seeds. The marker protein was only expressed in a specific organ (i.e. in dry seeds) and at a specific time (i.e. during dormancy), which are desirable features of selectable and/or screenable markers. This technique provides an immediate and non‐destructive method for identifying transformed dry seeds. It identified the heterozygous transformed seeds among the T1 population and the homozygous seeds among the T2 population with a false‐discovery rate of <1%. The FAST marker reduces the length of time required to produce homozygous transgenic lines from 7.5 to 4 months. Furthermore, it does not require sterilization, clean‐bench protocols or the handling of large numbers of plants. This technology should greatly facilitate the generation of transgenic Arabidopsis plants.  相似文献   
878.
879.
Screening of our library of peroxisome proliferator-activated receptor (PPAR) agonists yielded several phenylpropanoic acid-derived γ-secretase inhibitors (GSIs). Structure–activity relationship studies indicated that (R)-configuration of α-substituted phenylpropanoic acid structure and cinnamic acid structure is favorable to prepare Notch-sparing GSIs.  相似文献   
880.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号