首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6920篇
  免费   339篇
  国内免费   5篇
  2023年   11篇
  2022年   45篇
  2021年   70篇
  2020年   56篇
  2019年   53篇
  2018年   81篇
  2017年   68篇
  2016年   158篇
  2015年   229篇
  2014年   236篇
  2013年   507篇
  2012年   449篇
  2011年   485篇
  2010年   293篇
  2009年   273篇
  2008年   467篇
  2007年   498篇
  2006年   452篇
  2005年   442篇
  2004年   505篇
  2003年   385篇
  2002年   399篇
  2001年   65篇
  2000年   56篇
  1999年   67篇
  1998年   96篇
  1997年   72篇
  1996年   69篇
  1995年   69篇
  1994年   59篇
  1993年   51篇
  1992年   41篇
  1991年   48篇
  1990年   38篇
  1989年   36篇
  1988年   40篇
  1987年   26篇
  1986年   24篇
  1985年   20篇
  1984年   23篇
  1983年   17篇
  1982年   20篇
  1981年   24篇
  1980年   30篇
  1979年   14篇
  1978年   11篇
  1977年   19篇
  1976年   11篇
  1975年   9篇
  1973年   10篇
排序方式: 共有7264条查询结果,搜索用时 219 毫秒
161.
In nonapoptotic cells, the phosphorylation level of myosin II is constantly maintained by myosin kinases and myosin phosphatase. During apoptosis, caspase-3–activated Rho-associated protein kinase I triggers hyperphosphorylation of myosin II, leading to membrane blebbing. Although inhibition of myosin phosphatase could also contribute to myosin II phosphorylation, little is known about the regulation of myosin phosphatase in apoptosis. In this study, we have demonstrated that, in apoptotic cells, the myosin-binding domain of myosin phosphatase targeting subunit 1 (MYPT1) is cleaved by caspase-3 at Asp-884, and the cleaved MYPT1 is strongly phosphorylated at Thr-696 and Thr-853, phosphorylation of which is known to inhibit myosin II binding. Expression of the caspase-3 cleaved form of MYPT1 that lacked the C-terminal end in HeLa cells caused the dissociation of MYPT1 from actin stress fibers. The dephosphorylation activity of myosin phosphatase immunoprecipitated from the apoptotic cells was lower than that from the nonapoptotic control cells. These results suggest that down-regulation of MYPT1 may play a role in promoting hyperphosphorylation of myosin II by inhibiting the dephosphorylation of myosin II during apoptosis.  相似文献   
162.
Amylose is a linear polymer of α-1,4-linked glucose and is expected to be used in various industries as a functional biomaterial. However, pure amylose is currently not available for industrial purposes, since the separation of natural amylose from amylopectin is difficult. It is known that amylose has been synthesized using various enzymes. Glucan phosphorylase, together with its substrate, glucose-1-phosphate, is the most suitable system for the production of amylose since the molecular size of amylose can be controlled precisely. However, the problem with this system is that glucose-1-phosphate is too expensive for industrial purposes. This review summarizes our work on the enzymatic synthesis of essentially linear amylose, together with recent progress in the production of synthetic amylose using sucrose or cellobiose through the combined actions of phosphorylases.  相似文献   
163.
Oxidative stress has been implicated in the pathogenesis of numerous diseases, including cancer. In the present study, the protective effect of natural antioxidants, such as quercetin and tea polyphenols, on intracellular oxidative stress was studied. Here we report a novel function of quercetin and tea polyphenols, as potential inhibitors of 4-hydroxy-2-nonenal (HNE)-induced intracellular oxidative stress and cytotoxicity. In rat liver epithelial RL34 cells, a potent electrophile HNE dramatically induced the productions of reactive oxygen species (ROS), which correlated well with the reduction in cell viability. We found that quercetin and tea polyphenols, such as epigallocatechin gallate and theaflavins and their gallate esters, significantly inhibited the HNE-induced ROS production and cytotoxicity. In addition, HNE induced a transient decrease in the mitochondrial membrane potential (Δψ), which was also retarded by the antioxidants. These data suggest that the antioxidants, such as quercetin and tea polyphenols, are inhibitors against mitochondrial ROS production.  相似文献   
164.
Lipid peroxidation products contribute to protein aggregation that occurs during oxidative stress in a number of degenerative disorders. Acrolein (ACR), a highly toxic lipid peroxidation aldehyde, is a strong cross-linking agent of cellular components such as proteins. To understand the mechanisms of oxidative stress-induced protein aggregation, this study characterized the ACR modification of chain B from bovine insulin by mass spectrometry. To identify the cross-linking sites, the ACR-treated peptide was digested with a protease and the resulting peptides were analysed by liquid chromatography-tandem mass spectrometry. Inter- and intra-molecular cross-linking adducts were identified between amino groups and the side chain of histidine in the peptide. These results indicated that the ACR-induced cross-links were accompanied by two reactions, namely Michael addition and Schiff base formation. In conclusion, the use of mass spectrometric techniques provided chemical evidence for protein cross-linking with ACR.  相似文献   
165.
Abstract

Viral vector systems are efficient for transfection of foreign genes into many tissues. Especially, retrovirus based vectors integrate the transgene into the genome of the target cells, which can sustain long term expression. However, it has been demonstrated that the transduction efficiency using retrovirus is relatively lower than those of other viruses. Ultrasound was recently reported to increase gene expression using plasmid DNA, with or without, a delivery vehicle. However, there are no reports, which show an ultrasound effect to retrovirus‐mediated gene transfer efficiency.

Retrovirus‐mediated gene transfer systems were used for transfection of 293T cells, bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and rat skeletal muscle myoblasts (L6 cells) with β‐galactosidase (β‐Gal) genes. Transduction efficiency and cell viability assay were performed on 293T cells that were exposed to varying durations (5 to 30 seconds) and power levels (1.0 watts/cm2 to 4.0 watts/cm2) of ultrasound after being transduced by a retrovirus. Effects of ultrasound to the retrovirus itself was evaluated by transduction efficiency of 293T cells. After exposure to varying power levels of ultrasound to a retrovirus for 5 seconds, 293T cells were transduced by a retrovirus, and transduction efficiency was evaluated.

Below 1.0 watts/cm2 and 5 seconds exposure, ultrasound showed increased transduction efficiency and no cytotoxicity to 293T cells transduced by a retrovirus. Also, ultrasound showed no toxicity to the virus itself at the same condition. Exposure of 5 seconds at the power of 1.0 watts/cm2 of an ultrasound resulted in significant increases in retrovirus‐mediated gene expression in all four cell types tested in this experiment. Transduction efficiencies by ultrasound were enhanced 6.6‐fold, 4.8‐fold, 2.3‐fold, and 3.2‐fold in 293T cells, BAECs, RASMCs, and L6 cells, respectively. Furthermore, β‐Gal activities were also increased by the retrovirus with ultrasound exposure in these cells.

Adjunctive ultrasound exposure was associated with enhanced retrovirus‐mediated transgene expression in vitro. Ultrasound associated local gene therapy has potential for not only plasmid‐DNA‐, but also retrovirus‐mediated gene transfer.  相似文献   
166.
Abstract

Structure of cyclic adenosine diphosphoribose (cADPR) was reinvestigated by using 1H, 13C, and 31P NMR spectroscopy. The 1H-1H coupling constants and NOE data suggested that the adenosine and ribose moieties have a predominant C2′-endo conformation and an unusual flat conformation, respectively.  相似文献   
167.
Abstract

Reaction of 2′,3′,5′-O-silylated inosine derivative 1 with 2, 3-O-isopropylidene-5-O-tritylribosyl chloride (3) in a two-phase (CH2Cl2-aq. NaOH) system in the presence of Bu4NBr gave three products, i. e., 6-O-α-, 6-O-β-, and N 1-β-isomers of glycosides 4, 5a, and 5b. A similar PTC reaction of 1 with 2, 3, 5-tri-O-benzylribosyl bromide (9) gave four regio- and stereo-isomers involving the N1-β-glycoside 10. Reaction of 1 with 2, 3, 5-tri-O-benzoylribosyl bromide (11) afforded three products involving the desired N1-β-glycoside 12b, which could be deprotected to give N 1-ribosylinosine (15b) as a useful intermediate for the synthesis of cIDPR.

  相似文献   
168.
Inhibitors of xanthine oxidoreductase block conversion of xanthine to uric acid and are therefore potentially useful for treatment of hyperuricemia or gout. We determined the crystal structure of reduced bovine milk xanthine oxidoreductase complexed with oxipurinol at 2.0 Å resolution. Clear electron density was observed between the N2 nitrogen of oxipurinol and the molybdenum atom of the molybdopterin cofactor, indicating that oxipurinol coordinated directly to molybdenum. Oxipurinol forms hydrogen bonds with glutamate802, arginine880, and glutamate1261, which have previously been shown to be essential for the enzyme reaction. We discuss possible differences in the hypouricemic effect of inhibitors, including allopurinol and newly developed inhibitors, based on their mode of binding in the crystal structures.  相似文献   
169.
The selenium (Se)-containing antioxidant selenoneine (2-selenyl-N α,N α,N α-trimethyl-l-histidine) has recently been discovered to be the predominant form of organic Se in tuna blood. Although dietary intake of fish Se has been suggested to reduce methylmercury (MeHg) toxicity, the molecular mechanism of MeHg detoxification by Se has not yet been determined. Here, we report evidence that selenoneine accelerates the excretion and demethylation of MeHg, mediated by a selenoneine-specific transporter, organic cations/carnitine transporter-1 (OCTN1). Selenoneine was incorporated into human embryonic kidney HEK293 cells transiently overexpressing OCTN1 and zebrafish blood cells by OCTN1. The K m for selenoneine uptake was 13.0 μM in OCTN1-overexpressing HEK293 cells and 9.5 μM in zebrafish blood cells, indicating high affinity of OCTN1 for selenoneine in human and zebrafish cells. When such OCTN1-expressing cells and embryos were exposed to MeHg–cysteine (MeHgCys), MeHg accumulation was decreased and the excretion and demethylation of MeHg were enhanced by selenoneine. In addition, exosomal secretion vesicles were detected in the culture water of embryos that had been microinjected with MeHgCys, suggesting that these may be responsible for MeHg excretion and demethylation. In contrast, OCTN1-deficient embryos accumulated MeHg, and MeHg excretion and demethylation were decreased. Furthermore, Hg accumulation was decreased in OCTN1-overexpressing HEK293 cells, but not in mock vector-transfected cells, indicating that selenoneine and OCTN1 can regulate MeHg detoxification in human cells. Thus, the selenoneine-mediated OCTN1 system regulates secretory lysosomal vesicle formation and MeHg demethylation.  相似文献   
170.

Background

Dendritic cells (DCs) are professional antigen-presenting cells that play a crucial role in the initiation and modulation of immune responses. Human circulating blood DCs are divided into two major subsets: myeloid DCs (mDCs); and plasmacytoid DCs (pDCs). Furthermore, mDCs are subdivided into two subsets: Th1-promoting mDCs (mDC1s); and Th2-promoting mDCs (mDC2s). Although CD1a, CD1c, and CD141 are generally used for classifying mDC subsets, their adequacy as a specific marker remains unclear. We performed this study to compare circulating mDC, pDC, mDC1, and mDC2 subsets between Th1- and Th2-mediated diseases using CD1a and CD141, and to analyze the adequacy of CD1a and CD141 as a marker for mDC1s and mDC2s, respectively.

Methods

Thirty patients with sarcoidosis, 23 patients with atopic diseases, such as atopic bronchial asthma, and 23 healthy subjects as controls were enrolled in this study. Peripheral blood DC subsets were analyzed with flow cytometry according to expressions of CD11c, CD123, CD1a, and CD141. For functional analysis, we measured interleukin (IL) 12p40 levels produced by the sorted mDC subsets.

Results

The sarcoidosis group showed decreased total DC (P < 0.05) and mDC counts (P < 0.05) compared to controls. The atopy group showed decreased CD1a+mDC count (P < 0.05), and increased CD1a-mDC count (P < 0.05) compared to controls. CD141+mDC count in the atopy group was higher than controls (P < 0.05). Sorted CD1a+mDCs produced higher levels of IL-12p40 than CD1a-mDCs (P = 0.025) and CD141+mDCs (P = 0.018).

Conclusions

We conclude that decreased count of CD1a+mDC and increased count of CD141+mDC may reflect the Th2-skewed immunity in atopic diseases. The results of IL-12 levels produced by the sorted mDC subsets suggested the adequacy of CD1a and CD141 as a marker for mDC1 and mDC2, respectively, in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号