首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7340篇
  免费   359篇
  国内免费   5篇
  2022年   47篇
  2021年   74篇
  2020年   59篇
  2019年   54篇
  2018年   84篇
  2017年   74篇
  2016年   165篇
  2015年   242篇
  2014年   251篇
  2013年   569篇
  2012年   466篇
  2011年   504篇
  2010年   306篇
  2009年   282篇
  2008年   485篇
  2007年   512篇
  2006年   469篇
  2005年   455篇
  2004年   522篇
  2003年   394篇
  2002年   415篇
  2001年   78篇
  2000年   70篇
  1999年   77篇
  1998年   101篇
  1997年   76篇
  1996年   74篇
  1995年   72篇
  1994年   60篇
  1993年   56篇
  1992年   50篇
  1991年   60篇
  1990年   42篇
  1989年   45篇
  1988年   48篇
  1987年   33篇
  1986年   33篇
  1985年   26篇
  1984年   25篇
  1983年   22篇
  1982年   21篇
  1981年   25篇
  1980年   30篇
  1979年   19篇
  1978年   12篇
  1977年   24篇
  1976年   11篇
  1975年   11篇
  1974年   11篇
  1973年   13篇
排序方式: 共有7704条查询结果,搜索用时 31 毫秒
951.
Yazawa K  Kihara T  Shen H  Shimmyo Y  Niidome T  Sugimoto H 《FEBS letters》2006,580(28-29):6623-6628
Glutamate excitotoxicity is mediated by intracellular Ca(2+) overload, caspase-3 activation, and ROS generation. Here, we show that curcumin, tannic acid (TA) and (+)-catechin hydrate (CA) all inhibited glutamate-induced excitotoxicity. Curcumin inhibited PKC activity, and subsequent phosphorylation of NR1 of the NMDA receptor. As a result, glutamate-mediated Ca(2+) influx was reduced. TA attenuated glutamate-mediated Ca(2+) influx only when simultaneously administered, directly interfering with Ca(2+). Both curcumin and TA inhibited glutamate-induced caspase-3 activation. Although Ca(2+) influx was not attenuated by CA, caspase-3 was reduced by direct inhibition of the enzyme. All polyphenols reduced glutamate-induced generation of ROS.  相似文献   
952.
Synphilin-1 is an alpha-synuclein binding protein that is involved in the pathogenesis of Parkinson's disease. The present study investigated the phospholipid-binding capacity of Synphilin-1. The C-terminus of Synphilin-1 was found to selectively bind to acidic phospholipids, including phosphatidic acid, phosphatidylserine, and phosphatidylglycerol, but not to naturally charged phospholipids. Synphilin-1 was targeted to cytoplasmic lipid droplets in mammalian cells. The amino acid sequence 610-640 was found to represent the primary determinant site for phospholipid binding. Moreover, the R621C mutation identified in Parkinson's disease abolished Synphilin-1 association with lipid droplets. The lipophilicity of Synphilin-1 might prove relevant to its physiologic function.  相似文献   
953.
Flavin-binding Kelch repeat F-box (FKF1) protein plays important roles in the photoregulation of flowering in Arabidopsis. FKF1 has a light, oxygen, and voltage (LOV) sensing domain binding a flavin mononucleotide (FMN) as a chromophore noncovalently. Photoreaction of the FKF1-LOV polypeptide was studied by low-temperature absorption spectroscopy. Upon blue light irradiation, a ground state, D(450), is converted to S(390) known as a cysteinyl-flavin adduct intermediate in the photoreaction of phototropin. Below 150 K, bleaching of D(450) was much reduced and a new photoproduct, Z(370), appeared as well as S(390) formation. The calculated absorption spectrum for Z(370) is very similar to those of flavoproteins in an anion radical state. On the basis of the results that S(390) formation proceeds to Z(370) formation and that Z(370) formed at low temperatures reverts to D(450) upon temperature increase, Z(370) is concluded to be not an intermediate from D(450) to S(390). Z(370) is suggested to be formed from the biradical triplet-excited state after relaxing to the ground state with the FMN anion radical trapped at the low temperature, in which the SH of the cysteine is in the wrong position that is able to produce a radical pair but unable to form the cysteinyl-flavin adduct. The counter SH in the cationic radical state may revert to the ground state by extracting an electron from the unidentified amino acid residue. Interestingly, S(390) that has been thought to be irreversible to D(450) was revealed to revert to D(450) very slowly with a half-life time of 62.5 h in solution at 298 K. The photoreaction mechanism is discussed in reference to the calculated activation energy of the reaction processes.  相似文献   
954.
The -112A>C polymorphism (rs10011540) of the gene for uncoupling protein 1 (UCP1) has been associated with type 2 diabetes mellitus in Japanese individuals. The aim of the present study was to investigate the effects of this polymorphism, as well as the well-known -3826A>G polymorphism (rs1800592), on clinical characteristics of type 2 diabetes. We determined the genotypes of the two polymorphisms in 93 Japanese patients with type 2 diabetes. Intramyocellular lipid content and hepatic lipid content (HLC) were measured by magnetic resonance spectroscopy. No significant differences in age, sex, BMI, or HbA1c level were detected between type 2 diabetic patients with the -112C allele and those without it. However, homeostasis model assessment for insulin resistance (p=0.0089) and HLC (p=0.012) was significantly greater in patients with the -112C allele. We did not detect an association of the -3826A>G polymorphism (rs1800592) of UCP1 gene with any measured parameters. These results suggest that insulin resistance caused by the -112C allele influences the susceptibility to type 2 diabetes.  相似文献   
955.
Recent reports have shown that the endoplasmic reticulum (ER) stress is relevant to the pathogenesis of Alzheimer disease. Following the amyloid cascade hypothesis, we therefore attempted to investigate the effects of ER stress on amyloid-beta peptide (Abeta) generation. In this study, we found that ER stress altered the localization of amyloid precursor protein (APP) from late compartments to early compartments of the secretory pathway, and decreased the level of Abeta 40 and Abeta 42 release by beta- and gamma-cutting. Transient transfection with BiP/GRP78 also caused a shift of APP and a reduction in Abeta secretion. It was revealed that the ER stress response facilitated binding of BiP/GRP78 to APP, thereby causing it to be retained in the early compartments apart from a location suitable for the cleavages of Abeta. These findings suggest that induction of BiP/GRP78 during ER stress may be one of the regulatory mechanisms of Abeta generation.  相似文献   
956.

Background

It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo.

Methods and results

Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantly increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury.

Conclusions

These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.  相似文献   
957.
958.
We found that a mouse homolog of human DNA polymerase delta interacting protein 38, referred to as Mitogenin I in this paper, and mitochondrial single-stranded DNA-binding protein (mtSSB), identified as upregulated genes in the heart of mice with juvenile visceral steatosis, play a role in the regulation of mitochondrial morphology. We demonstrated that overexpression of Mitogenin I or mtSSB increased elongated or fragmented mitochondria in mouse C2C12 myoblast cells, respectively. On the other hand, the silencing of Mitogenin I or mtSSB by RNA interference led to an increase in fragmented or elongated mitochondria in the cells, respectively, suggesting that Mitogenin I and mtSSB are involved in the processes of mitochondrial fusion and fission, respectively. In addition, we showed that the silencing of Mitogenin I resulted in an increase in the number of trypan blue-positive cells and the silencing of mtSSB resulted in an enhancement of the sensitivity of the cells to apoptotic stimulation by etoposide. The present results demonstrated that these proteins play a role in cell survival.  相似文献   
959.
We report a novel in vitro high-throughput (HTP) kinase assay using surface plasmon resonance (SPR). In vitro tyrosine phosphorylation was performed in a microtiter plate, after which the substrate was captured with an antibody on a sensor chip and phosphotyrosine (pTyr) was detected with an anti-pTyr antibody. The capture and pTyr detection steps were performed using a Biacore A100, which is a sensitive and high-performance flow-cell-based SPR biosensor. This system allowed multiple sample processing (1000 samples/day) and high-quality data sampling. We compared the abilities of the HTP-SPR method and a standard radioisotope assay by measuring the phosphorylation of several substrate proteins by the Fyn tyrosine kinase. Similar results were obtained with both methods, suggesting that the HTP-SPR method is reliable. Therefore, the HTP-SPR method described in this study can be a powerful tool for a variety of screening analyses, such as kinase activity screening, kinase substrate profiling, and kinase HTP screening of kinase inhibitors.  相似文献   
960.
Previous studies have examined the conjugation of sulfhydryl compounds such as L-cysteine and glutathione with DOPA-quinone following the oxidation of tyrosine and DOPA by tyrosinase. These covalent reactions play a key role in the regulation and metabolism of pigment cells. We report on the first direct evidence for the formation of lipoyl adducts in reactions of thiol groups with DOPA-quinone in dihydrolipoic acid (6,8-dimercaptooctanoic acid [DHLA]). Incubating DHLA with DOPA-quinone followed by tyrosinase-catalyzed oxidation resulted in the three products predicted by HPLC-UV and LC-ESI(-)-MS analyses for DHLA DOPA conjugates. In the current study, we identified 5-S-lipoyl-DOPA among the principal products isolated by HPLC and characterized by FAB(-)-MS, ESI(-)-MS/MS, and 1H NMR, 2D-COSY studies. Collectively, these results suggest that DHLA undergoes sulfhydryl conjugation with DOPA-quinone, pointing to the involvement of thiol-reactive metabolites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号