首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   16篇
  2023年   3篇
  2022年   7篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   9篇
  2013年   17篇
  2012年   6篇
  2011年   8篇
  2010年   6篇
  2009年   5篇
  2008年   22篇
  2007年   7篇
  2006年   9篇
  2005年   4篇
  2004年   6篇
  2003年   11篇
  2002年   7篇
  2001年   7篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1968年   2篇
排序方式: 共有209条查询结果,搜索用时 328 毫秒
81.
Choroidal neovascularization (CNV) is a critical pathogenesis in age-related macular degeneration (AMD), the most common cause of blindness in developed countries. To date, the precise molecular and cellular mechanisms underlying CNV have not been elucidated. Platelet-activating factor (PAF) has been previously implicated in angiogenesis; however, the roles of PAF and its receptor (PAF-R) in CNV have not been addressed. The present study reveals several important findings concerning the relationship of the PAF-R signaling with CNV. PAF-R was detected in a mouse model of laser-induced CNV and was upregulated during CNV development. Experimental CNV was suppressed by administering WEB2086, a novel PAF-R antagonist. WEB2086-dependent suppression of CNV occurred via the inhibition of macrophage infiltration and the expression of proangiogenic (vascular endothelial growth factor) and proinflammatory molecules (monocyte chemotactic protein-1 and IL-6) in the retinal pigment epithelium–choroid complex. Additionally, WEB2086-induced PAF-R blockage suppresses experimentally induced subretinal fibrosis, which resembles the fibrotic subretinal scarring observed in neovascular AMD. As optimal treatment modalities for neovascular AMD would target the multiple mechanisms of AMD-associated vision loss, including neovascularization, inflammation and fibrosis, our results suggest PAF-R as an attractive molecular target in the treatment of AMD.  相似文献   
82.
The type 4 P-type ATPases are flippases that generate phospholipid asymmetry in membranes. In budding yeast, heteromeric flippases, including Lem3p-Dnf1p and Lem3p-Dnf2p, translocate phospholipids to the cytoplasmic leaflet of membranes. Here, we report that Lem3p-Dnf1/2p are involved in transport of the tryptophan permease Tat2p to the plasma membrane. The lem3Δ mutant exhibited a tryptophan requirement due to the mislocalization of Tat2p to intracellular membranes. Tat2p was relocalized to the plasma membrane when trans-Golgi network (TGN)-to-endosome transport was inhibited. Inhibition of ubiquitination by mutations in ubiquitination machinery also rerouted Tat2p to the plasma membrane. Lem3p-Dnf1/2p are localized to endosomal/TGN membranes in addition to the plasma membrane. Endocytosis mutants, in which Lem3p-Dnf1/2p are sequestered to the plasma membrane, also exhibited the ubiquitination-dependent missorting of Tat2p. These results suggest that Tat2p is ubiquitinated at the TGN and missorted to the vacuolar pathway in the lem3Δ mutant. The NH2-terminal cytoplasmic region of Tat2p containing ubiquitination acceptor lysines interacted with liposomes containing acidic phospholipids, including phosphatidylserine. This interaction was abrogated by alanine substitution mutations in the basic amino acids downstream of the ubiquitination sites. Interestingly, a mutant Tat2p containing these substitutions was missorted in a ubiquitination-dependent manner. We propose the following model based on these results; Tat2p is not ubiquitinated when the NH2-terminal region is bound to membrane phospholipids, but if it dissociates from the membrane due to a low level of phosphatidylserine caused by perturbation of phospholipid asymmetry in the lem3Δ mutant, Tat2p is ubiquitinated and then transported from the TGN to the vacuole.  相似文献   
83.
Xylitol dehydrogenase (XDHA) and l-arabitol dehydrogenase (LADA) are two key enzymes in xylan metabolism catalyzing the oxidation of xylitol to d-xylulose and arabitol to l-xylulose, respectively. In Aspergillus oryzae, XDHA and LADA are encoded by xdhA and ladA. We deleted xdhA and ladA and xdhAladA to generate mutants with decreased dehydrogenase activities and increased xylitol production. The mutants were constructed by homologous transformation into A. oryzae P4 (?pyrG) using pyrG as a selectable marker. The xylitol productivity of the mutants was measured using d-xylose as the sole carbohydrate source. xdhA, ladA, and the double-deletion mutant produced, respectively, 12.4 g xylitol/l with a yield of 0.24 g/g d-xylose, 12.4 g/l with a yield of 0.33 g/g d-xylose, and 8.6 g/l at a yield of 0.26 g/g d-xylose.  相似文献   
84.
Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT) from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg2+ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg2+ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state). In contrast, for lower Mg2+ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state). It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input.  相似文献   
85.
Leptin enhances insulin sensitivity in addition to reducing food intake and body weight. Recently, amylin, a pancreatic β-cell-derived hormone, was shown to restore a weight-reducing effect of leptin in leptin-resistant diet-induced obesity. However, whether amylin improves the effect of leptin on insulin sensitivity in diet-induced obesity is unclear. Diet-induced obese (DIO) mice were infused with either saline (S), leptin (L; 500 μg·kg?1·day?1), amylin (A; 100 μg·kg?1·day?1), or leptin plus amylin (L/A) for 14 days using osmotic minipumps. Food intake, body weight, metabolic parameters, tissue triglyceride content, and AMP-activated protein kinase (AMPK) activity were examined. Pair-feeding and weight-matched calorie restriction experiments were performed to assess the influence of food intake and body weight reduction. Continuous L/A coadministration significantly reduced food intake, increased energy expenditure, and reduced body weight, whereas administration of L or A alone had no effects. L/A coadministration did not affect blood glucose levels during ad libitum feeding but decreased plasma insulin levels significantly (by 48%), suggesting the enhancement of insulin sensitivity. Insulin tolerance test actually showed the increased effect of insulin in L/A-treated mice. In addition, L/A coadministration significantly decreased tissue triglyceride content and increased AMPKα2 activity in skeletal muscle (by 67%). L/A coadministration enhanced insulin sensitivity more than pair-feeding and weight-matched calorie restriction. In conclusion, this study demonstrates the beneficial effect of L/A coadministration on glucose and lipid metabolism in DIO mice, indicating the possible clinical usefulness of L/A coadministration as a new antidiabetic treatment in obesity-associated diabetes.  相似文献   
86.
87.
Saccharomyces cerevisiae Rad14 and Rad10 proteins are essential for nucleotide excision repair (NER). Rad14 is a UV-damaged DNA binding protein and Rad10 is a structure-specific endonuclease that functions in a complex with Rad1. In this study, we identified and characterized the RAD14 and RAD10 homolog genes in Neurospora crassa, which we named mus-43 and mus-44, respectively. Disruption of mus-43 and mus-44 conferred sensitivity to UV and 4-nitroquinoline 1-oxide, but not to methyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, camptothecin, hydroxyurea, or bleomycin. The mus-44 mutant was more sensitive to UV than the mus-43 mutant. Genetic analysis indicated that mus-43 and mus-44 are epistatic to mus-38 which is a homolog of the S. cerevisiae RAD1, but not to mus-18 which belongs to a second excision repair pathway. Immunological assays demonstrated that both mus-43 and mus-44 retained the ability to excise UV-induced cyclobutane pyrimidine dimers and 6-4 photoproducts, but that excision ability was completely abolished in the mus-43 mus-18 and mus-44 mus-18 double mutants. These double mutants exhibited extremely high sensitivity to UV. In mus-43 and mus-44 mutants, the UV-induced mutation frequency increased compared to that of the wild-type. The mus-44 mutants also exhibited a partial photoreactivation defect phenotype similar to mus-38. These results suggest that both mus-43 and mus-44 function in the mus-38 NER pathway, but not in the mus-18 excision repair pathway.  相似文献   
88.
Manufacturing processes used in the production of biopharmaceutical or biological products should be evaluated for their ability to remove potential contaminants, including TSE agents. In the present study, we have evaluated scrapie prion protein (PrP Sc) removal in the presence of different starting materials, using virus removal filters of different pore sizes. Following 75 nm filtration, PrP Sc was detected in the filtrate by Western blot (WB) analysis when a "super-sonicated" microsomal fraction derived from hamster adapted scrapie strain 263K (263K MF) was used as the spike material. In contrast, no PrP Sc was detected when an untreated 263K MF was used. By using spike materials prepared in a manner designed to optimize the particle size distribution within the preparation, only 15 nm filtration was shown to remove PrP Sc to below the limits of detection of the WB assays used under all the experimental conditions. However, infectious PrP Sc was recovered following 15 nm filtration under one experimental condition. The results obtained suggest that the nature of the spike preparation is an important factor in evaluating the ability of filters to remove prions, and that procedures designed to minimize the particle size distribution of the prion spike, such as the "super-sonication" or detergent treatments described herein, should be used for the preparation of the spike materials.  相似文献   
89.
Clostridium bifermentans strain DPH-1 reportedly dechlorinates tetrachloroethene (PCE) to cis-1,2-dichloroethene. Cultivation-based approaches resolved the DPH-1 culture into two populations: a nondechlorinating Clostridium sp. and PCE-dechlorinating Desulfitobacterium hafniense strain JH1. Strain JH1 carries pceA, encoding a PCE reductive dehalogenase, and shares other characteristics with Desulfitobacterium hafniense strain Y51.  相似文献   
90.
Mechanism of acid adaptation of a fish living in a pH 3.5 lake   总被引:1,自引:0,他引:1  
Despite unfavorable conditions, a single species of fish, Osorezan dace, lives in an extremely acidic lake (pH 3.5) in Osorezan, Aomori, Japan. Physiological studies have established that this fish is able to prevent acidification of its plasma and loss of Na(+). Here we show that these abilities are mainly attributable to the chloride cells of the gill, which are arranged in a follicular structure and contain high concentrations of Na(+)-K(+)-ATPase, carbonic anhydrase II, type 3 Na(+)/H(+) exchanger (NHE3), type 1 Na(+)-HCO(3)(-) cotransporter, and aquaporin-3, all of which are upregulated on acidification. Immunohistochemistry established their chloride cell localization, with NHE3 at the apical surface and the others localized to the basolateral membrane. These results suggest a mechanism by which Osorezan dace adapts to its acidic environment. Most likely, NHE3 on the apical side excretes H(+) in exchange for Na(+), whereas the electrogenic type 1 Na(+)-HCO(3)(-) cotransporter in the basolateral membrane provides HCO(3)(-) for neutralization of plasma using the driving force generated by Na(+)-K(+)-ATPase and carbonic anhydrase II. Increased expression of glutamate dehydrogenase was also observed in various tissues of acid-adapted dace, suggesting a significant role of ammonia and bicarbonate generated by glutamine catabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号