首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2351篇
  免费   97篇
  2022年   10篇
  2021年   17篇
  2020年   10篇
  2019年   19篇
  2018年   33篇
  2017年   19篇
  2016年   39篇
  2015年   59篇
  2014年   62篇
  2013年   221篇
  2012年   117篇
  2011年   121篇
  2010年   87篇
  2009年   70篇
  2008年   139篇
  2007年   121篇
  2006年   118篇
  2005年   123篇
  2004年   106篇
  2003年   98篇
  2002年   120篇
  2001年   48篇
  2000年   59篇
  1999年   52篇
  1998年   25篇
  1997年   26篇
  1996年   25篇
  1995年   31篇
  1994年   31篇
  1993年   21篇
  1992年   34篇
  1991年   34篇
  1990年   30篇
  1989年   23篇
  1988年   16篇
  1987年   19篇
  1986年   26篇
  1985年   24篇
  1984年   19篇
  1983年   24篇
  1982年   13篇
  1981年   19篇
  1979年   13篇
  1978年   8篇
  1977年   11篇
  1976年   14篇
  1975年   13篇
  1974年   16篇
  1973年   17篇
  1972年   9篇
排序方式: 共有2448条查询结果,搜索用时 172 毫秒
191.
Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.  相似文献   
192.
Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG)- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes—all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL) catalyzes hydrolysis of TG in plasma lipoproteins. In the present study, we investigated whether the effects of angiotensin II (AngII) on TG metabolism are mediated through an effect on LPL expression. Adipose tissues were divided into visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) for comparison. AngII accelerated LPL expression in SAT but, on the contrary, suppressed its expression in VAT. In both SAT and VAT, AngII signaled through the same type 1 receptor. In SAT, AngII increased LPL expression via c-Src and p38 MAPK signaling. In VAT, however, AngII reduced LPL expression via the Gq class of G proteins and the subsequent phospholipase C β4 (PLCβ4), protein kinase C β1, nuclear factor κB, and inducible nitric oxide synthase signaling pathways. PLCβ4 small interfering RNA experiments showed that PLCβ4 expression is important for the AngII-induced LPL reduction in VAT, in which PLCβ4 expression increases in the evening and falls at night. Interestingly, PLCβ4 expression in VAT decreased with fasting, while AngII did not decrease LPL expression in VAT in a fasting state. In conclusion, AngII reduces LPL expression through PLCβ4, the expression of which is regulated by feeding in VAT, whereas AngII increases LPL expression in SAT. The different effects of AngII on LPL expression and, hence, TG metabolism in VAT and SAT may partly explain their different contributions to the development of metabolic syndrome.  相似文献   
193.
A new bisindole alkaloid, bisleuconothine A (1) consisting of an eburnane–aspidosperma type skeleton, was isolated from the bark of Leuconotis griffithii. The structure including absolute stereochemistry was elucidated on the basis of 2D NMR data and X-ray analysis. Bisleuconothine A (1) showed cell growth inhibitory activity against various human cancer cell lines.  相似文献   
194.
We recently reported that the cwa1 mutation disturbed the deposition and assembly of secondary cell wall materials in the cortical fiber of rice internodes. Genetic analysis revealed that cwa1 is allelic to bc1, which encodes glycosylphosphatidylinositol (GPI)-anchored COBRA-like protein with the highest homology to Arabidopsis COBRA-like 4 (COBL4) and maize Brittle Stalk 2 (Bk2). Our results suggested that CWA1/BC1 plays a role in assembling secondary cell wall materials at appropriate sites, enabling synthesis of highly ordered secondary cell wall structure with solid and flexible internodes in rice. The N-terminal amino acid sequence of CWA1/BC1, as well as its orthologs (COBL4, Bk2) and other BC1-like proteins in rice, shows weak similarity to a family II carbohydrate-binding module (CBM2) of several bacterial cellulases. To investigate the importance of the CBM-like sequence of CWA1/BC1 in the assembly of secondary cell wall materials, Trp residues in the CBM-like sequence, which is important for carbohydrate binding, were substituted for Val residues and introduced into the cwa1 mutant. CWA1/BC1 with the mutated sequence did not complement the abnormal secondary cell walls seen in the cwa1 mutant, indicating that the CBM-like sequence is essential for the proper function of CWA1/BC1, including assembly of secondary cell wall materials.Key words: carbohydrate-binding module, COBRA-LIKE, CWA1/BC1, glycosylphosphatidylinositol-anchored protein, secondary cell wall formationThe main function of carbohydrate-binding modules (CBMs) of microbes and plants is to attach the enzyme to a variety of cell surface glycans and thereby increase the local concentration of substrate, leading to more efficient catalysis.14 Almost all CBMs studied to date contain surface-exposed aromatic rings, which have been shown to be the main sites of interaction with polysaccharides. These residues form face-to-face hydrophobic stacking interactions in which a Trp residue or ring of a Tyr residue interacts with the non-polar face of a sugar ring.59 CBMs have been classified into families based on amino acid sequence similarity. Currently, there are 59 defined families of CBMs and these CBMs display substantial variation in ligand specificity (http://www.cazy.org/Carbohydrate-Binding-Modules.html). Among these CBM families, the large family of CBM2 has been further classified into two subgroups, CBM2a and 2b, which have shown to bind cellulose and xylan, respectively.1012 CBM2a characteristically possess three exposed Trp residues,13 whereas CBM2b have two Trp residues,14 which are conserved among the CBM2 members (Fig. 1A).Open in a separate windowFigure 1Sequence alignment of the CBM-like sequence of CWA1/BC1, the BC1L proteins and bacterial CBM2 members. (A) Sequence alignment between bacterial CBM2a, 2b and CWA1/BC1. The three surface-exposed Trp residues of CBM2a members are indicated by asterisks and W. The CBM sequences of CBM2a are: CfiCenA, Cellulomonas fimi endo-1,4-glucanase; CfiCex, C. fimi exo-beta-1,4-glucanase. Those of CBM2b are: CfiXylD1, C. fimi endo-1,4-beta-xylanase D; CfiXylD2, C. fimi endo-1,4-beta-xylanase. CWA1/BC1 shows weak similarity to CBM2, and some Trp residues are conserved with bacterial CBM2 members. (B) Sequence alignment of CWA1/BC1, the BC1L proteins and CWA1/BC1 orthologs, Zea maiz Brittle Stalk 2 (ZmBk2) and Arabidopsis thaliana COBRA-LIKE 4 (AtCOBL4). The CBM-like sequence of CWA1/BC1, especially the Trp residues, is highly conserved among the analyzed sequences. Substituted Trp (W) residues to Val (V) in CWA1/BC1 are indicated by closed triangles. Numbers at the left are the positions of the amino acids in each protein, with gaps (dashes) included to maximize alignments. Identical and similar amino acids are shaded and gray, respectively.Our recent study showed that the defect of the rice CWA1/BC1 (CELL WALL ARCHITECTURE 1/BRITTLE CULM 1) gene induced abnormal secondary cell wall formation with amorphous and bulky structures at the cytoplasm side and CWA1/BC1 encodes one of COBRA-like glycosylphosphatidylinositol (GPI)-anchored proteins, which are specifically found in plants, suggesting that CWA1/BC1 regulates assembly of secondary cell wall materials in rice sclerenchyma. Furthermore, several reports have shown that the N-terminus of rice CWA1/BC1 and other COBRA-like GPI-anchored proteins in Arabidopsis (12 members) and maize Brittle Stalk 2 (Bk2) share weak similarity to a CBM2 in several bacterial cellulases.15,16 However, the importance of CBM-like sequence in COBRA family members has not been clarified. To investigate the nature of CWA1/BC1, we compared the CBM-like sequence in rice CWA1/BC1 with bacterial CBM2, 10 members of the BC1-like (BC1L) protein in rice and CWA1/BC1 orthologs, Arabidopsis COBL4 and maize Bk2. Furthermore, we constructed three-point mutated CWA1/BC1, in which three conserved Trp residues in CBM-like sequence were substituted for Val residues (CWA1/BC1W→V), and introduced it into the cwa1 mutant to evaluate the necessity of the CBM-like sequence for proper function of CWA1/BC1. We discuss a putative explanation, based on our results, of the properties and possible functions of CWA1/BC1.  相似文献   
195.
196.
The largest genus of the Eriocaulaceae, Paepalanthus, presents many taxonomic problems. Some of these were identified during studies of Eriocaulaceae from the flora of S?o Paulo State and Caparaó National Park. Here, we propose changes in nomenclature as a solution to such issues, based on type collections, recent collections and field observations. These changes are in agreement with the taxonomic species concept, and the rules established by the International Code of Botanical Nomenclature. We define six lectotypes: P. gneissicola, P. caparoensis, P. caldensis, P. lundii, P. oerstedianus and P. striatus, and six synonyms: P. gneissicola = P. acantholimon, P. loefgrenianus = P. aequalis, P. multicostatus = P. calvus, P. scopulifer = P. caparoensis, P. neocaldensis = P. flaccidus and P. macrotrichus = P. lundii. We also present comments on morphology, protologue and type collections.  相似文献   
197.
Equol is a metabolite produced from daidzein by enteric microflora, and it has attracted a great deal of attention because of its protective or ameliorative ability against several sex hormone-dependent diseases (e.g., menopausal disorder and lower bone density), which is more potent than that of other isoflavonoids. We purified a novel NADP(H)-dependent daidzein reductase (L-DZNR) from Lactococcus strain 20-92 (Lactococcus 20-92; S. Uchiyama, T. Ueno, and T. Suzuki, international patent WO2005/000042) that is involved in the metabolism of soy isoflavones and equol production and converts daidzein to dihydrodaidzein. Partial amino acid sequences were determined from purified L-DZNR, and the gene encoding L-DZNR was cloned. The nucleotide sequence of this gene consists of an open reading frame of 1,935 nucleotides, and the deduced amino acid sequence consists of 644 amino acids. L-DZNR contains two cofactor binding motifs and an 4Fe-4S cluster. It was further suggested that L-DZNR was an NAD(H)/NADP(H):flavin oxidoreductase belonging to the old yellow enzyme (OYE) family. Recombinant histidine-tagged L-DZNR was expressed in Escherichia coli. The recombinant protein converted daidzein to (S)-dihydrodaidzein with enantioselectivity. This is the first report of the isolation of an enzyme related to daidzein metabolism and equol production in enteric bacteria.Isoflavones are flavonoids present in various plants and are known to be abundant in soybeans and legumes. These compounds have been called phytoestrogens because their chemical structure is similar to that of the female sex hormone, estrogen. Isoflavones have an ability to bind to estrogen receptors and show protection against or improvement in several sex hormone-dependent diseases, such as breast cancer, prostate cancer, menopausal disorder, lower bone density, and hypertension, due to their weak agonistic or antagonistic effects (1, 19, 27).Daidzein is one of the main soy isoflavonoids produced from daidzin by the glucosidase of intestinal bacteria (17). Equol is a metabolite produced from daidzein by the enterobacterial microflora (5). Recently, equol has attracted a great deal of attention because its estrogenic activity is more potent than that of other isoflavonoids, including daidzein (27). It is well known that individual variation exists in the ability of these enteric microflora to produce equol and that less than half the human population is capable of producing equol after ingesting soy isoflavones (3). Therefore, to increase the production of equol in the enteric environment of each individual, the development of probiotics using safe bacteria which have the ability to produce equol from daidzein is ongoing.Lactococcus strain 20-92 (Lactococcus 20-92; 30a) is an equol-producing lactic acid bacterium isolated from the feces of healthy humans by Uchiyama et al. (30). This bacterium is spherical and Gram positive and is a strain of L. garvieae. The application of Lactococcus 20-92 in probiotics is advantageous because L. garvieae is not pathogenic or toxic to humans.To date, other bacterial strains that are capable of transforming daidzein to dihydrodaidzein or equol have been isolated (9, 21, 22, 23, 29, 32, 36, 37). Daidzein is thought to be metabolized by human intestinal bacteria to equol or to O-desmethylangolensin via dihydrodaidzein and tetrahydrodaidzein (14, 15, 22, 32); however, neither the enzymes involved in the metabolism of daidzein to equol nor even the metabolic pathway has been clarified fully for equol-producing bacteria.In this study, we purified an enzyme from Lactococcus 20-92 that assisted in the conversion of daidzein to dihydrodaidzein. Furthermore, we cloned the L-DZNR gene and expressed the active recombinant enzyme in E. coli.  相似文献   
198.
Adipose tissue-derived mesenchymal stem cells (ASCs) have been reported to be multipotent and to differentiate into various cell types, including osteocytes, adipocytes, chondrocytes, and neural cells. Recently, many authors have reported that ASCs are also able to differentiate into vascular endothelial cells (VECs) in vitro. However, these reports included the use of medium containing fetal bovine serum for endothelial differentiation. In the present study, we have developed a novel method for differentiating mouse ASCs into VECs under serum-free conditions. After the differentiation culture, over 80% of the cells expressed vascular endothelial-specific marker proteins and could take up low-density lipoprotein in vitro. This protocol should be helpful in clarifying the mechanisms of ASC differentiation into the VSC lineage.  相似文献   
199.
The eyes are riched in long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid [ARA; 20:4 (n−6)] and docosahexaenoic acid [DHA; 22:6 (n−3)]. Despite their abundance in the eyes, ARA and DHA cannot be sufficiently synthesized de novo in mammals. During gestation, eye development is exceptionally rapid, and substantial amounts of LC-PUFAs are needed to ensure proper eye development. Here, we studied the influences of dietary LC-PUFAs in dams (C57BL/6 and C3H/He) on the eye morphogenesis and organogenesis of their pups. Intriguingly, fetuses and newborn mice from C57BL/6 dams fed an LC-PUFA (particularly ARA)-enriched diet displayed a much higher incidence of eye abnormalities such as microphthalmia (small eye) and corneal opacity than those from dams fed an LC-PUFA-poor diet. The effects of LC-PUFAs on eye anomalies were evident only in the female pups of C57BL/6 inbred mice, not in those of C3H/He mice or male C57BL/6 mice. These results demonstrate a gene-by-environment (GxE) interaction in eye development in mice. Furthermore, our molecular analysis suggested the potential roles of Pitx3 and Pax6 in the above interaction involving ARA.  相似文献   
200.
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets various substrates for proteolysis inside and outside of the cell cycle. The activation of APC/C is dependent on two WD-40 domain proteins, Cdc20 and Cdh1. While APC/Cdc20 principally regulates mitotic progression, APC/Cdh1 shows a broad spectrum of substrates in and beyond cell cycle. In the past several years, numerous biochemical and mouse genetic studies have greatly attracted our attention to the emerging role of APC/Cdh1 in genomic integrity, cellular differentiation and human diseases. This review will aim to summarize the recently expanded understanding of APC/Cdh1 in regulating biological function and how its dysfunction may lead to diseases.Key words: APC/C, Cdh1, proteolysis, genomic integrity, signal transduction, differentiation, tumorigenesis  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号