首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1397篇
  免费   58篇
  2021年   10篇
  2020年   8篇
  2019年   13篇
  2018年   23篇
  2017年   14篇
  2016年   24篇
  2015年   42篇
  2014年   41篇
  2013年   160篇
  2012年   77篇
  2011年   87篇
  2010年   58篇
  2009年   42篇
  2008年   65篇
  2007年   70篇
  2006年   66篇
  2005年   65篇
  2004年   64篇
  2003年   56篇
  2002年   73篇
  2001年   21篇
  2000年   16篇
  1999年   15篇
  1998年   21篇
  1997年   16篇
  1996年   18篇
  1995年   20篇
  1994年   18篇
  1993年   14篇
  1992年   10篇
  1991年   11篇
  1990年   15篇
  1989年   6篇
  1988年   6篇
  1987年   9篇
  1986年   13篇
  1985年   16篇
  1984年   11篇
  1983年   18篇
  1982年   8篇
  1981年   13篇
  1980年   5篇
  1979年   11篇
  1978年   5篇
  1977年   10篇
  1976年   11篇
  1975年   9篇
  1974年   13篇
  1973年   12篇
  1972年   4篇
排序方式: 共有1455条查询结果,搜索用时 15 毫秒
91.
We previously reported that mac25/angiomodulin (AGM), a 30-kDa secretory protein, is abundantly expressed in high endothelial venules (HEVs), which play a crucial role in lymphocyte trafficking to the lymph nodes and Peyer's patches. We report that mac25/AGM interacts preferentially with certain molecules that are expressed in or around HEVs. In particular, mac25/AGM interacted with not only the extracellular matrix proteins and glycosaminoglycans that are expressed in most blood vessels including HEVs, but also with some chemokines that are implicated in the regulation of lymphocyte trafficking, such as the secondary lymphoid-tissue chemokine (SLC; CCL21), IFN-gamma-inducible protein 10 (IP-10; CXCL10), and RANTES (CCL5). The binding of mac25/AGM to SLC and IP-10 was dose-dependent and saturable. The binding to IP-10 could be inhibited by SLC but not by a non-mac25/AGM-binding chemokine, EBI1-ligand chemokine (ELC; CCL19). Interestingly, mac25/AGM failed to interact with 18 other chemokines, suggesting that it binds to certain chemokines preferentially. Immunohistochemical analysis indicated that mac25/AGM colocalizes at least partially with SLC and IP-10 at the basal lamina of HEVs. Upon binding with mac25/AGM, SLC and IP-10 retained all their Ca(2+)-signaling activity in vitro, suggesting that mac25/AGM can hold and present chemokines in the basal lamina of HEVs. These results imply that mac25/AGM plays a multifunctional role, serving not only as an adhesion protein to interact with glycosaminoglycans and extracellular matrix proteins but also as a molecule to present chemokines so that lymphocytes extravasating through HEVs receive further directional cues subsequent to the luminal encounter with lymphoid chemokines.  相似文献   
92.
The mechanism of toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is thought to result from changes in gene expression via the aryl hydrocarbon receptor (AHR). The induction of cytochrome P450 1A (CYP1A) in various organs is a cardinal effect of TCDD. However, whether CYP1A is involved in endpoints of TCDD toxicity is controversial. We investigated the role of CYP1A in TCDD-induced developmental toxicities using gene knock-down with morpholino antisense oligos. Exposure of zebrafish embryos to TCDD, at concentrations eliciting the hallmark endpoints of developmental toxicity, induced CYP1A in the heart and vascular endothelium throughout the body. This induction by TCDD was markedly inhibited by morpholinos to zebrafish arylhydrocarbon receptor 2 (zfAHR2-MO) and to zebrafish CYP1A (zfCYP1A-MO). The zfAHR2-MO but not the zfCYP1A-MO inhibited zfCYP1A mRNA expression, indicating the specificities of these morpholinos. Injection of either zfAHR2-MO or zfCYP1A-MO blocked the representative signs of TCDD developmental toxicity in zebrafish, pericardial edema and trunk circulation failure. The morpholinos appeared do not affect normal development in TCDD-untreated embryos. These results suggest a mediatory role of zfCYP1A induction through zfAHR2 activation in causing circulation failure by TCDD in zebrafish. This is the first molecular evidence demonstrating an essential requirement for CYP1A induction in TCDD-evoked developmental toxicities in any vertebrate species.  相似文献   
93.
The etiology of type 2 diabetes (DM) is polygenic. We investigated here genes and polymorphisms that associate with DM in the Japanese population. Single-nucleotide polymorphisms (SNPs) of 398 derived from 120 candidate genes were examined for association with DM in a population-based case-control study. The study group consisted of 148 cases and 227 controls recruited from Funagata, Japan. No evident subpopulation structure was detected for the tested population. The association tests were conducted with standard allele positivity tables (chi(2) tests) between SNP genotype frequency and case-control status. The independent association of the SNPs from serum triglyceride levels and body mass index was examined by multiple logistic regression analysis. A value of P<0.01 was accepted as statistically significant. Six genes (met proto-oncogene, ATP-binding cassette transporter A1, fatty acid binding protein 2, LDL receptor defect C complementing, aldolase B, and sulfonylurea receptor) were shown to be associated with DM.  相似文献   
94.
In the inflammatory gingival tissues of patients with periodontitis, cytokines such as interleukin (IL)-1 alpha, IL-1 beta, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha have been detected. Gingival fibroblasts are the major constituents of gingival tissue. We recently demonstrated that lipopolysaccharide (LPS) from periodontopathic bacteria induces inflammatory reactions in various tissues via CD14 and/or Toll-like receptors (TLRs) in gingival tissues [Biochem. Biophys. Res. Commun. 273 (2000) 1161]. To confirm this, we examined the expression of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF-alpha, CD14, TLR2, and TLR4 in human gingival fibroblasts (HGFs) obtained from patients with healthy or inflammatory gingiva using DNA microarray analysis. We also studied the expression levels of these proteins by flow cytometric analysis (FACS). The expression levels of all eight genes in the HGFs of the Inflammatory group were significantly higher than those in the Healthy group on DNA microarray analysis. FACS revealed that the expression levels of all eight proteins on the HGFs of the Inflammatory group were higher than those on the Healthy group. Our data indicated that these eight proteins in HGFs are involved in inflammatory conditions in the gingiva, including periodontal disease. Our results suggested that these eight proteins, in turn, act directly or indirectly on the immune response by activating host cells involved in inflammatory processes.  相似文献   
95.
96.
Detailed knowledge of neuronal connectivity patterns is indispensable for studies of various aspects of brain functions. We previously established a genetic strategy for visualization of multisynaptic neural pathways by expressing wheat germ agglutinin (WGA) transgene under the control of neuron type-specific promoter elements in transgenic mice and Drosophila. In this paper, we have developed a WGA-expressing recombinant adenoviral vector system and applied it for analysis of the olfactory system. When the WGA-expressing adenovirus was infused into a mouse nostril, various types of cells throughout the olfactory epithelium were infected and expressed WGA protein robustly. WGA transgene products in the olfactory sensory neurons were anterogradely transported along their axons to the olfactory bulb and transsynaptically transferred in glomeruli to dendrites of the second-order neurons, mitral and tufted cells. WGA protein was further conveyed via the lateral olfactory tract to the olfactory cortical areas including the anterior olfactory nucleus, olfactory tubercle, piriform cortex and lateral entorhinal cortex. In addition, transsynaptic retrograde labeling was observed in cholinergic neurons in the horizontal limb of diagonal band, serotonergic neurons in the median raphe nucleus, and noradrenergic neurons in the locus coeruleus, all of which project centrifugal fibers to the olfactory bulb. Thus, the WGA-expressing adenovirus is a useful and powerful tool for tracing neural pathways and could be used in animals that are not amenable to the transgenic technology.  相似文献   
97.
98.
Nicastrin, a type-I transmembrane glycoprotein, is a necessary component of the high molecular weight presenilin (PS) complexes that mediate intramembranous cleavage of beta-amyloid precursor protein (betaAPP) and Notch. Nicastrin undergoes trafficking-dependent glycosylation maturation, and PS1 interacts preferentially with these maturely glycosylated forms of nicastrin. We investigated the effects of differing levels of the immature and mature endoglycosidase-H-resistant forms of nicastrin on Abeta40- and Abeta42-peptide secretion in several cell lines stably expressing a mutant nicastrin (D336A/Y337A) that increases Abeta secretion. There was no correlation between Abeta secretion and the level of over-expression of the immature forms of nicastrin. The total level of mature nicastrin remained constant, but mutant nicastrin replaced endogenous mature nicastrin in varying degrees. Differences in the levels of mature mutant nicastrin positively correlated with Abeta secretion, but did not influence either betaAPP trafficking or processing by alpha- and beta-secretases. Proper trafficking and terminal maturation of nicastrin is therefore a necessary event for the regulated intramembranous proteolysis of betaAPP.  相似文献   
99.
To clarify the molecular basis underlying the neural function of the honeybee mushroom bodies (MBs), we identified three genes preferentially expressed in MB using cDNA microarrays containing 480 differential display-positive candidate cDNAs expressed locally or differentially, dependent on caste/aggressive behavior in the honeybee brain. One of the cDNAs encodes a putative type I inositol 1,4,5-trisphosphate (IP(3)) 5-phosphatase and was expressed preferentially in one of two types of intrinsic MB neurons, the large-type Kenyon cells, suggesting that IP(3)-mediated Ca(2+) signaling is enhanced in these neurons.  相似文献   
100.
Glutathione is the most abundant non-protein thiol in the cell, with roles in cell cycle regulation, detoxification of xenobiotics, and maintaining the redox tone of the cell. The glutathione content is controlled at several levels, the most important being the rate of de novo synthesis, which is mediated by two enzymes, glutamate cysteine ligase (GCL), and glutathione synthetase (GS), with GCL being rate-limiting generally. The GCL holoenzyme consists of a catalytic (GCLC) and a modulatory (GCLM) subunit, which are encoded by separate genes. In the present study, the signaling mechanisms leading to de novo synthesis of GSH in response to physiologically relevant concentrations of 4-hydroxy-2-nonenal (4HNE), an endproduct of lipid peroxidation, were investigated. We demonstrated that exposure to 4HNE resulted in increased content of both Gcl mRNAs, both GCL subunits, phosphorylated JNK1 and c-Jun proteins, as well as Gcl TRE sequence-specific AP-1 binding activity. These increases were attenuated by pretreating the cells with a novel membrane-permeable JNK pathway inhibitor, while chemical inhibitors of the p38 or ERK pathways were ineffective. These data reveal that de novo GSH biosynthesis in response to 4HNE signals through the JNK pathway and suggests a major role for AP-1 driven expression of both Gcl genes in HBE1 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号