首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   20篇
  276篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   7篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   20篇
  2012年   21篇
  2011年   6篇
  2010年   14篇
  2009年   9篇
  2008年   22篇
  2007年   20篇
  2006年   10篇
  2005年   8篇
  2004年   18篇
  2003年   16篇
  2002年   10篇
  2001年   2篇
  2000年   10篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有276条查询结果,搜索用时 30 毫秒
101.
We have found that the gel filtration fraction of porcine heart extract clearly promoted the survival of NIH3T3 fibroblast cells in the serum-free medium condition. A structural analysis showed that the active fraction contained a novel peptide, porcine Cox17p (p-Cox17p), which was recently reported by Chen et al. as dopuin (Z. W. Chen et al., Eur. J. Biochem. 249 (1997) 518-522). Porcine Cox17p/dopuin possesses high sequence homology to the product of human COX17 gene (h-Cox17p). Although Cox17p has been implied to be involved in copper recruitment to mitochondria and in the functional assembly of cytochrome oxidase in yeast, its role in mammalian cells is unknown. In this study, we chemically synthesized p-Cox17p to investigate its biological effects. Refolding experiments of synthesized linear p-Cox17p revealed the existence of mostly one pattern of three intrachain disulfide bridges similar to that of native p-Cox17p, because the main oxidized p-Cox17p was completely co-eluted with the natural product. The addition of heavy metal ions such as copper, zinc and cadmium significantly inhibited the formation of the oxidized form, suggesting that reduced p-Cox17p may interact directly with these metal ions. The reduced and oxidized forms of p-Cox17p were also confirmed to promote the survival of NIH3T3 cells in serum-free medium as observed with the natural product, indicating that Cox17p may be a bioactive peptide.  相似文献   
102.
Neuropeptide W (NPW) is a novel hypothalamic peptide that activates the orphan G protein-coupled receptors, GPR7 and GPR8. Two endogenous molecular forms of NPW that consist of 23- and 30-amino acid residues were identified. Intracerebroventricular (i.c.v.) administration of NPW is known to suppress spontaneous-feeding at dark-phase and fasting-induced food intake and to decrease body weight and plasma growth hormone and to increase prolactin and corticosterone; however, little is known about its effect on other physiological functions. We examined the effects of i.c.v. administration of NPW30 (0.3 and 3 nmol) on the mean arterial pressure (MAP), heart rate (HR), and plasma norepinephrine and epinephrine in conscious rats. NPW30 (3 nmol) provoked increases in MAP (85.12+/-3.16 to 106.26+/-2.66 mm Hg) and HR (305.75+/-13.76 to 428.45+/-26.82 beats/min) and plasma norepinephrine (138.1+/-18.1 to 297.2+/-25.9 pg/ml) and epinephrine (194.6+/-21.4 to 274.6+/-22.7 pg/ml). Intravenously administered NPW30 (3 nmol) had no significant effects on MAP and HR. These results indicate that central NPW30 increases sympathetic nervous outflow and affects cardiovascular function.  相似文献   
103.
We designed this study to determine whether a high insulin level and a diabetic state need to exist together to cause an impairment of endothelium-dependent relaxation. In diabetic rat aortas organ-cultured with insulin [vs both control rat aortas cultured with insulin and diabetic rat aortas cultured in serum-free medium]: (1) the relaxation responses to both acetylcholine (endothelium-dependent relaxation) and Angeli's salt (nitric oxide donor) were significantly weaker, (2) acetylcholine-stimulated nitric oxide production was significantly smaller, (3) superoxide and nitric oxide production into the culture medium was greater, and (4) the levels of both nitrotyrosine and tyrosine-nitrated sarco/endoplasmic reticulum calcium ATPase (SERCA) protein were greater. The insulin-induced effects were prevented by cotreatment with either a superoxide scavenger or a peroxynitrite scavenger. After preincubation with an irreversible SERCA inhibitor, the relaxation induced by the nitric oxide donor was significantly impaired in control aortas cultured with or without insulin and in diabetic aortas cultured without insulin, but not in diabetic aortas cultured with insulin. These results suggest that the coexistence of a high insulin level and an established diabetic state may lead to an excessive generation of peroxynitrite, and that this may in turn trigger an impairment of endothelium-dependent relaxation via a decrease in SERCA function.  相似文献   
104.
Interaction of P2X7 receptor with P2X4 receptor has recently been suggested, but it remains unclear whether P2X4 receptor is involved in P2X7 receptor-mediated events, such as cell death of macrophages induced by high concentrations of extracellular ATP. Here, we present evidence that P2X4 receptor does play a role in P2X7 receptor-dependent cell death. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced Ca(2+) influx, non-selective large pore formation, activation of extracellular signal-regulated protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK), and cell death via activation of P2X7 receptor. P2X4-knockdown cells, established by transfecting RAW264.7 cells with two short hairpin RNAs (shRNAs) targeting P2X4 receptor, showed a decrease of the initial peak of intracellular Ca(2+) after treatment with ATP, though pore formation and the P2X7-mediated activation of ERK1/2 and p38 MAPK were not affected. Intriguingly, P2X4 knockdown resulted in significant suppression of cell death induced by ATP or P2X7 agonist BzATP. In conclusion, our results suggest that P2X4 receptor is involved in P2X7 receptor-mediated cell death, but not pore formation or MAPK signaling.  相似文献   
105.

Background

Membrane protein interactions play an important role in cell-to-cell recognition in various biological activities such as in the immune or neural system. Nevertheless, there has remained the major obstacle of expression of the membrane proteins in their active form. Recently, we and other investigators found that functional membrane proteins express on baculovirus particles (budded virus, BV). In this study, we applied this BV display system to detect interaction between membrane proteins important for cell-to-cell interaction in immune system.

Methodology/Principal Findings

We infected Sf9 cells with recombinant baculovirus encoding the T cell membrane protein CD2 or its ligand CD58 and recovered the BV. We detected specific interaction between CD2-displaying BV and CD58-displaying BV by an enzyme-linked immunosorbent assay (ELISA). Using this system, we also detected specific interaction between two other membrane receptor-ligand pairs, CD40-CD40 ligand (CD40L), and glucocorticoid-induced TNFR family-related protein (GITR)-GITR ligand (GITRL). Furthermore, we observed specific binding of BV displaying CD58, CD40L, or GITRL to cells naturally expressing their respective receptors by flowcytometric analysis using anti-baculoviral gp64 antibody. Finally we isolated CD2 cDNA from a cDNA expression library by magnetic separation using CD58-displayng BV and anti-gp64 antibody.

Conclusions

We found the BV display system worked effectively in the detection of the interaction of membrane proteins. Since various membrane proteins and their oligomeric complexes can be displayed on BV in the native form, this BV display system should prove highly useful in the search for natural ligands or to develop screening systems for therapeutic antibodies and/or compounds.  相似文献   
106.
The p25(rum1) is an inhibitor of Cdc2 kinase expressed in fission yeast and plays an important role in cell-cycle control. As its amino-acid sequence suggests that p25(rum1) has putative phosphorylation sites for mitogen-activated protein kinase (MAPK), we investigated the ability of MAPK to phosphorylate p25(rum1). Direct in vitro kinase assay using GST-fusion proteins of wild-type as well as various mutants of p25(rum1) demonstrated that MAPK phosphorylates the N-terminal portion of p25(rum1) and residues Thr13 and Ser19 are major phosphorylation sites for MAPK. In addition, phosphorylation of p25(rum1) by MAPK revealed markedly reduced Cdc2 kinase inhibitor ability of the protein. Together with the fact that replacement of both Thr13 and Ser19 with Glu, which mimics the phosphorylated state of these residues, also significantly reduces the activity of p25(rum1) as a Cdc2 inhibitor, it was suggested that the phosphorylation of Thr13 and Ser19 negatively regulates the function of p25(rum1). Further evidence indicates that phosphorylation of Thr13 and Ser19 may retain a negative effect on the function of p25(rum1) even in vivo. Therefore, MAPK may regulate the function of p25(rum1) via phosphorylation of its Thr and Ser residues and thus participate in cell cycle control in fission yeast.  相似文献   
107.
108.
109.
Hepatic stellate cells (HSC) are central to liver fibrosis. The eicosanoid pathway and cyclooxygenase-2 (COX-2) may be an important signaling mechanism in HSC. We investigated the role of COX-2, prostaglandin E(2) (PGE(2)) and prostaglandin I(2) (PGI(2)) in proliferation of LI90, an immortalized cell line of HSC. Our results showed that COX-2 was upregulated by platelet-derived growth factor (PDGF), a mitogen in HSC. COX-2 was responsible for the production of PGE(2) and PGI(2) in PDGF-stimulated LI90 cells. Furthermore, we demonstrated that COX-2 and PGE(2) mediated the proliferative response of LI90 to PDGF while synthetic analogue of PGI(2) exhibited anti-proliferative effect. Our findings suggest complex interactions of prostaglandins in liver fibrogenesis. In vivo studies using animal models are needed to elucidate the effect of COX-2 inhibition by non-steroidal anti-inflammatory drugs or COX-2 inhibitor in hepatic fibrosis.  相似文献   
110.
The Vitamin D(3) lactone analogues, (23S)- and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647 and TEI-9648) are antagonists of the 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) nuclear receptor (VDR)-mediated differentiation of human leukemia (HL-60) cells. In order to clarify the structure-Vitamin D antagonistic activity relationship, we paid attention to the unique lactone moiety of TEI-9647 and TEI-9648: alpha-exo-methylene-gamma-lactone structure. We synthesized the exo-methylene-modified analogues (methylene saturated, endo-methylene, methylene-deleted, methyl-substituted, dimethyl-substituted, methylene-replaced with dimethyl and cyclopropane) and oxygen-modified analogues (oxygen atom replaced with nitrogen and carbon atom) by convergent method using palladium-catalyzed coupling reaction or direct modification of VD(3) skeleton. The antagonistic activity in HL-60 cell differentiation evaluating system of these analogues revealed that any exo-methylene-modified analogues and nitrogen analogue did not have the antagonistic activity, on the other hand carbon analogue did show. The results suggest that alpha-exo-methylene carbonyl structure of VD(3) side-chain is crucial for antagonistic activity. The structure is integral building block of many natural products which have interesting biological and it is thought that Michael-type addition of alpha-exo-methylene carbonyl structure with protein nucleophiles such as cysteine would play an important role for the activities. According to this theory, Michael-type reaction of TEI-9647 and TEI-9648 with cysteine residue in protein related to VDR/VDRE-mediated genomic actions such as VDR would be essential step of the antagonistic action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号