首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1835篇
  免费   178篇
  2013篇
  2022年   20篇
  2021年   33篇
  2020年   25篇
  2019年   24篇
  2018年   49篇
  2017年   48篇
  2016年   54篇
  2015年   69篇
  2014年   79篇
  2013年   217篇
  2012年   116篇
  2011年   125篇
  2010年   72篇
  2009年   55篇
  2008年   113篇
  2007年   106篇
  2006年   82篇
  2005年   71篇
  2004年   93篇
  2003年   74篇
  2002年   76篇
  2001年   17篇
  2000年   23篇
  1999年   23篇
  1998年   25篇
  1997年   11篇
  1996年   23篇
  1995年   15篇
  1993年   8篇
  1992年   12篇
  1991年   16篇
  1990年   15篇
  1989年   7篇
  1988年   15篇
  1987年   6篇
  1986年   8篇
  1985年   13篇
  1984年   10篇
  1983年   7篇
  1982年   13篇
  1981年   12篇
  1980年   15篇
  1979年   14篇
  1978年   13篇
  1977年   9篇
  1976年   7篇
  1975年   13篇
  1973年   7篇
  1971年   6篇
  1968年   5篇
排序方式: 共有2013条查询结果,搜索用时 0 毫秒
991.
Although proteins are generally composed entirely of l-amino acids, we have previously shown that Asp-151 in alphaA-crystallin from aged human lens is converted to the biologically uncommon d-isomer to a high degree. The formation of d-isomer was not simple racemization, but stereoinvertion. The reaction was also accompanied with isomerization to form beta-Asp (isoaspartate) residue simultaneously; therefore, four isomers of Asp-151, normal l-alpha-Asp and biologically uncommon l-beta-Asp, d-alpha-Asp, and d-beta-Asp, are formed in alphaA-crystallins. In the present study, we measured the ratio of the four isomers of Asp-151 in alphaA-crystallins obtained from total lens proteins of human lenses of newborn and 30-, 60-, and 80-year-olds. The isomers increased with age, and the total amount of three isomers was more than that of normal l-alpha-Asp in the alphaA-crystallin of the human lenses of the 80-year-olds. These drastic changes started at birth, with about 45% of normal l-alpha-Asp lost by 30 years. These modifications of the Asp residue likely affect the three-dimensional packing array of the lens proteins.  相似文献   
992.
The SEC14 gene in Saccharomyces cerevisiae encodes a phosphatidylinositol transfer protein required for secretory protein movement from the Golgi. Mutation of SAC1, a gene of unknown function, restores secretory flow in sec14-1(ts) strains. The existing model for the bypass of the sec14-1(ts) defect by sac1-22 involves stimulation of sphingolipid biosynthesis and, in particular, the synthesis of mannosyl-diinositolphosphoryl-ceramide with concomitant increases in Golgi diacylglycerol levels. To test this model, we disrupted IPT1, the mannosyl-diinositolphosphoryl-ceramide synthase of S. cerevisiae. Disruption of the IPT1 gene had no effect on the ability of sac1-22 to bypass sec14-1(ts). Furthermore, sphingolipid analysis of sec14-1(ts) and sec14-1(ts) sac1-22 strains showed that mannosyl-diinositolphosphoryl-ceramide synthesis was not stimulated in the bypass mutant. However, the sec14-1(ts) strain had elevated mannosyl-monoinositolphosphoryl-ceramide levels, and the sec14-1(ts) sac1-22 strain showed an 8-fold increase in phosphatidylinositol 4-phosphate along with a decrease in phosphatidylinositol 4,5-bisphosphate. Cellular diacylglycerol levels, measured by [14C]acetate incorporation, did not differ between the sec14-1(ts) and the sec14-1 sac1-22 bypass strains, although disruption of IPT1 in the bypass strain resulted in reduced levels. These data indicate that phosphatidylinositol 4-phosphate, rather than mannosyl-diinositolphosphoryl-ceramide, accumulates in the sec14-1(ts) sac1-22 bypass strain, and that Golgi diacylglycerol accumulation is not required for bypass of the sec14-1(ts) growth and secretory phenotypes.  相似文献   
993.
Epithelial neutrophil-activating peptide-78 (ENA-78) is a member of CXC chemokines. It is produced by endothelial cells stimulated with interleukin-1 (IL-1), along with other CXC chemokines such as IL-8 and growth-related oncogene protein-alpha (GRO-alpha). IL-1-induced ENA-78 production by endothelial cells may be important for the regulation of neutrophil activation. 15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a natural ligand for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and affects the expression of various genes. We examined the effect of 15d-PGJ(2) on the expression of ENA-78 in cultured endothelial cells stimulated with IL-1beta. 15d-PGJ(2) inhibited the IL-1beta-induced expression of ENA-78, but not the expression of IL-8 or GRO-alpha in response to IL-1. Ciglitazone, another agonist for PPAR-gamma, had no effect on the expression of ENA-78, suggesting that 15d-PGJ(2) may inhibit the expression of ENA-78 in a PPAR-gamma-independent manner. 15d-PGJ(2) may modulate inflammatory reactions by regulating the balance of CXC chemokines in endothelial cells.  相似文献   
994.
We screened the putative rap-phr (response regulator aspartyl-phosphate phosphatase-phosphatase regulator) systems identified in the Bacillus subtilis genome for a rap gene that affects aprE (alkaline protease gene) expression by using a multicopy plasmid. We found that rapG was involved in the regulation of aprE, which belongs to the regulon of DegU, the response regulator of the DegS-DegU two-component system. Disruption of rapG and phrG resulted in enhancement and reduction of aprE-lacZ expression, respectively, suggesting that PhrG inhibits RapG activity. Addition of 1-30 nM of a synthetic pentapeptide (PhrG; NH2-EKMIG-COOH) to the phrG disruptant completely rescued aprE-lacZ expression, indicating that the PhrG peptide is indeed involved in aprE-lacZ expression. Surprisingly, either introduction of multicopy phrG or addition of the PhrG peptide at high concentrations (100-300 nM) to the phrG cells decreased aprE-lacZ expression. These results are reminiscent of the previous observation that at higher concentrations the PhrC peptide inhibits srfA-lacZ expression directed by ComA, the regulator of the ComP-ComA two-component system. Because the Rap proteins belong to a family of aspartyl protein phosphatases, we tried to investigate the possible influence of RapG on dephosphorylation of DegU-P (phosphorylated DegU) in vitro. RapG, however, did not affect dephosphorylation of DegU-P under the adopted experimental conditions. Therefore, we hypothesized that RapG might inhibit the binding activity of DegU to the target promoters. We analysed the interaction of DegU and RapG using the aprE promoter and another target, a comK promoter. Gel shift analysis revealed that RapG served as the inhibitor of DegU binding to the promoter regions of aprE and comK and that this inhibition was counteracted by the PhrG peptide.  相似文献   
995.
Nakamura K  Kawabata T  Yura K  Go N 《FEBS letters》2003,553(3):239-244
An analysis of the genome sequence database revealed novel types of two-domain multi-copper oxidases. The two-domain proteins have the conspicuous combination of blue-copper and inter-domain trinuclear copper binding residues, which is common in ceruloplasmin and ascorbate oxidase but not in nitrite reductase, and therefore are considered to retain the characteristics of the plausible ancestral form of ceruloplasmin and ascorbate oxidase. A possible evolutionary relationship of these proteins is proposed.  相似文献   
996.
Hori K  Konno D  Maruoka H  Sobue K 《FEBS letters》2003,554(1-2):30-34
Insulin receptor substrate p53 (IRSp53) is a key player in cytoskeletal dynamics, interacting with the actin modulators WAVE2 and Mena. Here, we identified a PDZ protein, MALS, as an IRSp53-interacting protein using a yeast two-hybrid screen. A pull-down assay showed that IRSp53 and MALS interact through the PDZ domain of MALS and the C-terminal PDZ-binding sequence of IRSp53. Their interaction in MDCK cells was also demonstrated by co-immunoprecipitation. Immunocytochemistry showed the colocalization of IRSp53 and MALS at cell-cell contacts. Cytochalasin D induced the redistribution of both proteins to the cytosol. Thus, MALS is a partner of IRSp53 anchoring the actin-based membrane cytoskeleton at cell-cell contacts.  相似文献   
997.
The roles of putative active site residues of the Saccharomyces cerevisiae sphingolipid C-4 long chain base hydroxylase (Sur2p) were investigated by site-directed mutagenesis. The replacement of any one of conserved His residues of three histidine-rich motifs with an alanine eliminated hydroxylase activity in vivo and in vitro, indicating that they are all essential elements of the active site. An additional conserved His residue (His 249) outside of the histidine-rich cluster region was also found to be crucial for activity. Additional mutants altered in residues in close proximity to the histidine-rich cluster were generated. In order to determine their roles in hydroxylase vs. desaturase activities, residues were replaced with conserved residues from the yeast Delta7-sterol-C5(6)-desaturase, Erg3p. Residues Phe 174, Asn 182, Ser 191, Leu 196, Pro 199, Asn 266, Tyr 269, Asp 271 and Gln 275 appear to be additionally important elements of the active site but their conversion into corresponding Erg3p residues did not lead to a gain in desaturase activity. It is concluded that Sur2p is a membrane-bound hydroxylase that belongs to the diiron family of eight-histidine motif enzymes.  相似文献   
998.
We surveyed the neural substrata for behavioral thermoregulation with immunohistochemical analysis of the expression of Fos protein in the rat brain. We used an operant system in which a rat exposed to heat (40 degrees C) could get cold air (0 degrees C) for 30 s when it moved into the reward area. Rats moved in and out of the reward area of the system periodically and thus maintained their body temperature at a normal level. In the rats performing heat escape behavior (active group), strong Fos immunoreactivity (Fos-IR) was found in the median preoptic nucleus (MnPO), parastrial nucleus (PS), and dorsomedial hypothalamus (DMH) compared with the controls. Another group of rats (passive group) were given the same temperature changes, regardless of the rat's movement, as those obtained by rats of the active group. Fos-IR in the MnPO was also seen in this group. The present results suggest that the PS and DMH play an important role in the genesis of thermoregulatory behavior, whereas the MnPO may be important for detecting changes in ambient and/or body temperatures.  相似文献   
999.
Cyclic AMP evokes fluid secretion with bicarbonate in exocrine ducts. Clearance of fluorescent dyes from rat parotid intralobular ducts by forskolin was visualized as a fluorescence change in the duct luminal space by optical sectioning under a confocal laser scanning microscope to clarify the secretory function in the ducts. When the isolated rat parotid intralobular duct segments were superfused with membrane-impermeable fluorescent dyes during the experimental period, fluorescent dyes were passively moved into the duct space. Forskolin and isobutylmethylxanthine decreased the fluorescence of anionic dye, sulforhodamine B, and neutral dye, dextran tetramethyl-rhodamine, in the duct space, suggesting that the forskolin-induced clearance of fluorescent dyes might be the result of fluid secretion in the ducts. Methazolamide inhibited a forskolin-induced sustained decrease in duct fluorescence and intracellular acidification. Low concentrations of external Cl?, DIDS, bumetanide and amiloride did not markedly inhibit a forskolin-induced decrease in duct fluorescence. These findings suggest that a major portion of the steady decrease in duct fluorescence by forskolin was related to intracellular HCO3? production, not the uptake mechanism of external Cl?. Glibenclamide, NPPB, DPC and DMA inhibited the forskolin-induced decrease. Forskolin evokes the clearance of fluorescent dyes from duct space possibly due to fluid secretion in rat parotid ducts, associated with secretion through CFTR and DPC-sensitive anion channels of carbonic anhydrase-dependent bicarbonate linked with the Na+/H+ exchange mechanism.  相似文献   
1000.
We previously described that recombinant interleukin-1beta (IL-1beta) induced the significant release of substance P (SP) via a cyclooxygenase (COX) pathway in primary cultured rat dorsal root ganglion (DRG) cells. In the present study, we examined the involvement of two types of phospholipase A2 (PLA2) enzymes, which lie upstream of COX in the prostanoid-generating pathway, in the IL-1beta-induced release of SP from DRG cells. The expression of type IIA secretory PLA2 (sPLA2 -IIA) mRNA was undetectable by ribonuclease protection assay in non-treated DRG cells, while in DRG cells incubated with 1 ng/mL of IL-1beta, the expression was induced in a time-dependent manner. On the other hand, type IV cytosolic PLA2 (cPLA2 ) mRNA was constitutively expressed in the non-treated DRG cells, and treatment with 1 ng/mL of IL-1beta for 3 h significantly increased the levels of cPLA2 mRNA. The IL-1beta-induced SP release was significantly inhibited by the sPLA2 inhibitor, thioetheramide phosphorylcholine (TEA-PC), and the cPLA2 inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3 ). Furthermore AACOCF3 suppressed the induction of sPLA2 -IIA mRNA expression induced by IL-1beta. These observations suggested that two types of PLA2, sPLA2 -IIA and cPLA2, were involved in the IL-1beta-induced release of SP from DRG cells, and that the functional cross-talk between the two enzymes might help to control their activity in the prostanoid-generating system in DRG cells. These events might be key steps in the inflammation-induced hyperactivity in primary afferent neurons of spinal cord.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号