首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   10篇
  215篇
  2024年   1篇
  2023年   7篇
  2021年   12篇
  2020年   1篇
  2019年   7篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   9篇
  2013年   11篇
  2012年   8篇
  2011年   9篇
  2010年   6篇
  2009年   8篇
  2008年   12篇
  2007年   14篇
  2006年   17篇
  2005年   20篇
  2004年   9篇
  2003年   13篇
  2002年   16篇
  2001年   3篇
  1999年   3篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1986年   1篇
  1982年   3篇
  1977年   1篇
  1976年   1篇
排序方式: 共有215条查询结果,搜索用时 15 毫秒
21.
Freezing of spermatozoa and unfertilized oocytes is a useful tool for the conservation of mouse genetic resources. However, the proportion of frozen-thawed oocytes fertilized with spermatozoa in vitro is low because spermatozoa, especially those frozen-thawed, can not penetrate into oocytes because of hardening of the zona pellucida following premature release of cortical granules. To produce offspring efficiently from cryopreserved transgenic mouse gametes, we fertilized frozen-thawed gametes by using intracytoplasmic sperm injection (ICSI) and assessed pre- and postimplantation development of embryos. Compared with fresh unfertilized oocytes, frozen-thawed unfertilized oocytes were highly tolerant to damage by injection, as the survival rates after injection of frozen spermatozoa were 51 and 78%, respectively. Frozen-thawed oocytes that survived after sperm injection developed normally to the blastocyst stage and gave rise to offspring. Moreover, offspring with transgenes also were obtained from frozen gametes fertilized by ICSI. These results demonstrate that ICSI is an efficient technique for producing offspring from transgenic spermatozoa showing low fertility and that use of frozen-thawed oocytes leads to conservation of genetic resources because suboptimally preserved gametes are not wasted.  相似文献   
22.
The advantage of freeze-dried mouse spermatozoa is that samples can be stored in the refrigerator (+4 degrees C). Moreover, the storage of freeze-dried spermatozoa at ambient temperature would permit spermatozoa to be shipped easily and at low cost around the world. To examine the influence of the storage temperature on freeze-dried spermatozoa, we assessed the fertilizing ability of spermatozoa stored at different temperatures. Cauda epididymal spermatozoa were freeze-dried in buffer consisting of 50 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, 50 mM NaCl, and 10 mM Tris-HCl (pH 8.0). Samples of freeze-dried spermatozoa were stored at -70, -20, +4, or +24 degrees C for periods of 1 week and 1, 3, and 5 months. Sperm chromosomes were maintained well at -70, -20, and + 4 degrees C for 5 months, and oocytes fertilized with these spermatozoa developed to normal offspring. Moreover, the chromosomal integrity of spermatozoa stored at -20 or + 4 degrees C did not decrease even after 17 months. In contrast, the chromosomes of spermatozoa stored at +24 degrees C were maintained well for 1 month but became considerably degraded after 3 months. In addition, to investigate the cause of deterioration of sperm chromosomes during storage at +24 degrees C, spermatozoa were freeze-dried in buffer containing DNase I. The chromosomes of spermatozoa freeze-dried with 1 or 0.2 units/ml of DNase I, 100% or 72%, respectively, exhibited chromosomal abnormalities. Our findings suggest that freeze-dried spermatozoa can be stored long-term with stability at +4 degrees C, and the suppression of nucleases present in the buffer or spermatozoa during storage led to the achievement of long-term storage of freeze-dried spermatozoa.  相似文献   
23.
Immunoblot analysis of Le.CDC5 (842 amino acid residues), the expressed product of the cDNA of Le.cdc5 gene that has been previously reported to be most actively transcribed in primordia and small immature fruiting bodies of the basidiomycete Lentinula edodes, showed that the primordia, immature fruiting bodies and mature fruiting bodies contain similar amounts of Le.CDC5 protein. This indicates that the Le.CDC5 protein molecules synthesized in the beginning and early stage of fruiting-body formation remains in mycelial tissues even after small immature fruiting bodies developed and matured. Immunohistochemical analysis showed that Le.CDC5 is present everywhere in the mycelial tissues of immature fruiting body, but prehymenophore, the border between pileus and stipe, and the bottom of stipe seem likely to contain larger amounts of Le.CDC5. Within the hymenophore of mature fruiting body, the hymenium (in/on which a large number of basidia and basidiospores are formed) contains the Le.CDC5 most exclusively.  相似文献   
24.
Phosphoinositide 3-kinase (PI3K) has important functions in various biological systems, including immune response. Although the role of PI3K in signaling by antigen-specific receptors of the adaptive immune system has been extensively studied, less is known about the function of PI3K in innate immunity. In the present study, we demonstrate that macrophages deficient for PI3K (p85alpha regulatory subunit) are impaired in nitric oxide (NO) production upon lipopolysaccharide and interferon-gamma stimulation and thus vulnerable for intracellular bacterial infection such as Chlamydophila pneumoniae. Although expression of inducible nitric-oxide synthase (iNOS) is induced normally in PI3K-deficient macrophages, dimer formation of iNOS protein is significantly impaired. The amount of intracellular tetrahydrobiopterin, a critical stabilizing cofactor for iNOS dimerization, is decreased in the absence of PI3K. In addition, induction of GTP cyclohydrolase 1, a rate-limiting enzyme for biosynthesis of tetrahydrobiopterin, is greatly reduced. Our current results demonstrate a critical role of class IA type PI3K in the bactericidal activity of macrophages by regulating their NO production through GTP cyclohydrolase 1 induction.  相似文献   
25.
The dehalorespiring Desulfitobacterium hafniense strain Y51 efficiently dechlorinates tetrachloroethene (PCE) to cis-1,2-dichloroethene (cis-DCE) via trichloroethene by PceA reductive dehalogenase encoded by the pceA gene. In a previous study, we found that the significant growth inhibition of strain Y51 occurred in the presence of commercial cis-DCE. In this study, it turned out that the growth inhibition was caused by chloroform (CF) contamination of cis-DCE. Interestingly, CF did not affect the growth of PCE-nondechlorinating SD (small deletion) and LD (large deletion) variants, where the former fails to transcribe the pceABC genes caused by a deletion of the promoter and the latter lost the entire pceABCT gene cluster. Therefore, PCE-nondechlorinating variants, mostly LD variant, became predominant, and dechlorination activity was significantly reduced in the presence of CF. Moreover, such a growth inhibitory effect was also observed in the presence of carbon tetrachloride at 1 microM, but not carbon dichloride even at 1 mM.  相似文献   
26.
The tight-skin (TSK/+) mouse, a genetic model of systemic sclerosis (SSc), develops cutaneous fibrosis and defects in pulmonary architecture. Because hepatocyte growth factor (HGF) is an important mitogen and morphogen that contributes to the repair process after tissue injury, we investigated the role of HGF in cutaneous fibrosis and pulmonary architecture defects in SSc using TSK/+ mice. TSK/+ mice were injected in the gluteal muscle with either hemagglutinating virus of Japan (HVJ) liposomes containing 8 mug of a human HGF expression vector (HGF-HVJ liposomes) or a mock vector (untreated control). Gene transfer was repeated once weekly for 8 weeks. The effects of HGF gene transfection on the histopathology and expression of tumor growth factor (TGF)-beta and IL-4 mRNA in TSK/+ mice were examined. The effect of recombinant HGF on IL-4 production by TSK/+ CD4+ T cells stimulated by allogeneic dendritic cells (DCs) in vitro was also examined. Histologic analysis revealed that HGF gene transfection in TSK/+ mice resulted in a marked reduction of hypodermal thickness, including the subcutaneous connective tissue layer. The hypodermal thickness of HGF-treated TSK/+ mice was decreased two-fold to three-fold compared with untreated TSK/+ mice. However, TSK/+ associated defects in pulmonary architecture were unaffected by HGF gene transfection. HGF gene transfection significantly inhibited the expression of IL-4 and TGF-beta1 mRNA in the spleen and skin but not in the lung. We also performed a mixed lymphocyte culture and examined the effect of recombinant HGF on the generation of IL-4. Recombinant HGF significantly inhibited IL-4 production in TSK/+ CD4+ T cells stimulated by allogeneic DCs. HGF gene transfection inhibited IL-4 and TGF-beta mRNA expression, which has been postulated to have a major role in fibrinogenesis and reduced hypodermal thickness, including the subcutaneous connective tissue layer of TSK/+ mice. HGF might represent a novel strategy for the treatment of SSc.  相似文献   
27.
Floral thermogenesis has been described in several plant species. Because of the lack of comprehensive gene expression profiles in thermogenic plants, the molecular mechanisms by which floral thermogenesis is regulated remain to be established. We examined the gene expression landscape of skunk cabbage (Symplocarpus renifolius) during thermogenic and post-thermogenic stages and identified expressed sequence tags from different developmental stages of the inflorescences using super serial analysis of gene expression (SuperSAGE). In-depth analysis suggested that cellular respiration and mitochondrial functions are significantly enhanced during the thermogenic stage. In contrast, genes involved in stress responses and protein degradation were significantly up-regulated during post-thermogenic stages. Quantitative comparisons indicated that the expression levels of genes involved in cellular respiration were higher in thermogenic spadices than in Arabidopsis inflorescences. Thermogenesis-associated genes seemed to be expressed abundantly in the peripheral tissues of the spadix. Our results suggest that cellular respiration and mitochondrial metabolism play key roles in heat production during floral thermogenesis. On the other hand, vacuolar cysteine protease and other degradative enzymes seem to accelerate senescence and terminate thermogenesis in the post-thermogenic stage.  相似文献   
28.
The migratory properties of lymphocytes depend on DOCK2, an atypical Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 does not contain the Dbl homology domain typically found in guanine nucleotide exchange factors (GEFs), DOCK2 mediates the GTP-GDP exchange reaction for Rac via its DOCK homology region (DHR)-2 (also known as CZH2 or Docker) domain. DOCK2 DHR-2 domain is composed of three lobes, and Rac binding site and catalytic center are generated entirely from lobes B and C. On the other hand, lobe A has been implicated in dimer formation, yet its physiological significance remains unknown. Here, we report that lobe A-mediated DOCK2 dimerization is crucial for Rac activation and lymphocyte migration. We found that unlike wild-type DOCK2, DOCK2 mutant lacking lobe A failed to restore motility and polarity when expressed in thymoma cells and primary T cells lacking endogenous expression of DOCK2. Similar results were obtained with the DOCK2 point mutant having a defect in dimerization. Deletion of lobe A from the DHR-2 domain did not affect Rac GEF activity in vitro. However, fluorescence resonance energy transfer analyses revealed that lobe A is required for DOCK2 to activate Rac effectively during cell migration. Our results thus indicate that DOCK2 dimerization is functionally important under the physiological condition where only limited amounts of DOCK2 and Rac are localized to the plasma membrane.  相似文献   
29.
Plastids are a diverse group of essential organelles in plants that include chloroplasts. The biogenesis and maintenance of these organelles relies on the import of thousands of nucleus-encoded proteins. The complexity of plastid structure has resulted in the evolution of at least four general import pathways that target proteins into and across the double membrane of the plastid envelope. Several of these pathways can be further divided into specialty pathways that mediate and regulate the import of specific classes of proteins. The co-ordination of import by these specialized pathways with changes in gene expression is critical for plastid and plant development. Moreover, protein import is acutely regulated in response to physiological and metabolic changes within the cell. In the present review we summarize the current knowledge of the mechanism of import via these pathways and highlight the regulatory mechanisms that integrate the plastid protein-trafficking pathways with the developmental and metabolic state of the plant.  相似文献   
30.
As body composition in Asian populations is largely different from Western populations, a healthy BMI could also differ between the two populations. Thus, further study is needed to determine whether a healthy BMI in Asians should be lower than Western populations, as recommended by the World Health Organization (WHO). We investigated the relationship between BMI and mortality in a sample of 8,924 Japanese men and women without stroke or heart disease. During 19 years of follow-up, 1,718 deaths were observed. We found a U-shaped relationship between BMI and fatal events. Risk of total mortality was highest in participants with BMI <18.5 kg/m(2) and lowest in participants with BMI 23.0-24.9 kg/m(2). These findings persisted even after excluding the first 5 years of follow-up with a focus on healthy participants who never smoked, were aged <70 years, and had total cholesterol (TC) levels >or=4.1 mmol/l (N=3712). For both the full sample and healthy participants, all-cause mortality risk did not differ between BMI ranges 21.0-22.9 and 23.0-24.9 kg/m(2). Our findings do not support the recent WHO implications that BMIs <23.0 kg/m(2) is healthy for Asians. Therefore, further studies are needed to identify an optimal BMI range for Asia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号