首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1496篇
  免费   82篇
  2022年   8篇
  2021年   13篇
  2020年   4篇
  2019年   7篇
  2018年   17篇
  2017年   13篇
  2016年   18篇
  2015年   35篇
  2014年   49篇
  2013年   106篇
  2012年   70篇
  2011年   84篇
  2010年   51篇
  2009年   58篇
  2008年   94篇
  2007年   97篇
  2006年   81篇
  2005年   87篇
  2004年   98篇
  2003年   103篇
  2002年   74篇
  2001年   31篇
  2000年   26篇
  1999年   29篇
  1998年   22篇
  1997年   13篇
  1996年   7篇
  1995年   14篇
  1994年   8篇
  1993年   15篇
  1992年   27篇
  1991年   25篇
  1990年   12篇
  1989年   10篇
  1988年   17篇
  1987年   9篇
  1986年   9篇
  1985年   17篇
  1984年   19篇
  1983年   8篇
  1982年   17篇
  1981年   9篇
  1980年   11篇
  1979年   13篇
  1978年   10篇
  1977年   4篇
  1976年   6篇
  1975年   8篇
  1974年   4篇
  1973年   3篇
排序方式: 共有1578条查询结果,搜索用时 921 毫秒
991.
The kinesin-binding site on the microtubule has not been identified because of the technical difficulties involved in the mutant analyses of tubulin. Exploiting the budding yeast expression system, we succeeded in replacing the negatively charged residues in the alpha-helix 12 of beta-tubulin with alanine and analyzed their effect on kinesin-microtubule interaction in vitro. The microtubule gliding assay showed that the affinity of the microtubules for kinesin was significantly reduced in E410A, D417A, and E421A, but not in E412A mutant. The unbinding force measurement revealed that in the former three mutants, the kinesin-microtubule interaction in the adenosine 5'-[beta,gamma-imido]triphosphate state (AMP-PNP state) became less stable when a load was imposed towards the microtubule minus end. In parallel with this decreased stability, the stall force of kinesin was reduced. Our results implicate residues E410, D417, and E421 as crucial for the kinesin-microtubule interaction in the strong binding state, thereby governing the size of kinesin stall force.  相似文献   
992.
Misfolded proteins are recognized in the endoplasmic reticulum (ER), transported back to the cytosol, and degraded by the proteasome. A number of proteins are processed and modified by a glycosylphosphatidylinositol (GPI) anchor in the ER, but the quality control mechanisms of GPI-anchored proteins remain unclear. Here, we report on the quality control mechanism of misfolded GPI-anchored proteins. We have constructed a mutant form of the beta-1,3-glucanosyltransferase Gas1p (Gas1*p) as a model misfolded GPI-anchored protein. Gas1*p was modified with a GPI anchor but retained in the ER and was degraded rapidly via the proteasome. Disruption of BST1, which encodes GPI inositol deacylase, caused a delay in the degradation of Gas1*p. This delay was because of an effect on the deacylation activity of Bst1p. Disruption of genes involved in GPI-anchored protein concentration and N-glycan processing caused different effects on the degradation of Gas1*p and a soluble misfolded version of carboxypeptidase Y. Furthermore, Gas1*p associated with both Bst1p and BiP/Kar2p, a molecular chaperone, in vivo. Our data suggest that GPI inositol deacylation plays important roles in the quality control and ER-associated degradation of GPI-anchored proteins.  相似文献   
993.
The SMC protein complexes safeguard genomic integrity through their functions in chromosome segregation and repair. The chromosomal localization of the budding yeast Smc5/6 complex determined here reveals that the complex works specifically on the duplicated genome in differently regulated pathways. The first controls the association to centromeres and chromosome arms in unchallenged cells, the second regulates the association to DNA breaks, and the third directs the complex to the chromosome arm that harbors the ribosomal DNA arrays. The chromosomal interaction pattern predicts a function that becomes more important with increasing chromosome length and that the complex's role in unchallenged cells is independent of DNA damage. Additionally, localization of Smc6 to collapsed replication forks indicates an involvement in their rescue. Altogether this shows that the complex maintains genomic integrity in multiple ways, and evidence is presented that the Smc5/6 complex is needed during replication to prevent the accumulation of branched chromosome structures.  相似文献   
994.
In mice implanted with an osmotic pump filled with the superantigen (SAG) staphylococcal enterotoxin A (SEA), the Vβ3+CD4+ T cells exhibited a high level of expansion whereas the Vβ11+CD4+ T cells exhibited a mild level of expansion. In contrast, in mice implanted with an osmotic pump filled with SE-like type P (SElP, 78.1% homologous with SEA), the Vβ11+CD4+ T cells exhibited a high level of expansion while the Vβ3+CD4+ T cells exhibited a low level of expansion, suggesting that the level of the SAG-induced response is determined by the affinities between the TCR Vβ molecules and SAG. Analyses using several hybrids of SEA and SElP showed that residue 206 of SEA determines the response levels of Vβ3+CD4+ and Vβ11+CD4+ T cells both in vitro and in vivo. Analyses using the above-mentioned hybrids showed that the binding affinities between SEA and the Vβ3/Vβ11 β chains and between SEA-MHC class II-molecule complex and Vβ3+/Vβ11+ CD4+ T cells determines the response levels of the SAG-reactive T cells both in vitro and in vivo.  相似文献   
995.
The transfer range of phage genes was investigated at the single-cell level by using an in situ DNA amplification technique. After absorption of phages, a phage T4 gene was maintained in the genomes of non-plaque-forming bacteria at frequencies of 10−2 gene copies per cell. The gene transfer decreased the mutation frequencies in nonhost recipients.Recently, whole-genome analyses have revealed that many bacterial genomes contain foreign genes, especially phage genes (9). The phage genes in bacterial genomes include genes for virulence or fitness factors such as extracellular toxins, superantigens, lipopolysaccharide-modifying enzymes, and proteins conferring serum resistance, etc. (1). These findings suggest that the horizontal transfer of phage genes has contributed significantly to the acquisition of new genetic traits and to the genetic diversity of bacteria (1, 9, 10). To truly appreciate the mechanisms behind phage-associated evolution, it is important to understand the frequency and range of transfer of phage genes.Most phage genomes consist of many genes derived from different origins (5, 8). Some genes are similar to those of other phages with phylogenetically different hosts or are found in the genomes of bacteria that are not the phage hosts. The mosaic nature of phage genomes has been known for some time, and a body of molecular genetic studies of phages to explain the mechanisms that drive this feature have been attempted previously (1, 5). More importantly, the horizontal transfer of phage genes has emerged as a major factor in the evolution of the phage genome. Since recombination between phage and phage/prophage can occur when these elements coexist in the same cell, coinfection with multiple phage species may result in the production of hybrid phage genomes (5). The pathways by which phages exchange genetic material vary dramatically in concert with host ranges. However, conventional plaque assays have shown that the host ranges of the phages studied are narrow. We hypothesized that phage genes can be transferred to more diverse species than previously thought.In order to accurately quantify DNA movement, gene targeting that does not require cultivation or gene expression is necessary (7). In situ DNA amplification methods allow the visualization of specific DNA sequences inside bacterial cells. In this study, we employed cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) to examine the possible range and frequency of the transfer of phage genes. CPRINS uses one primer and results in linear amplification of the target DNA inside cells, and multiply labeled fluorescent probe sets are applied for detection of the amplicons to improve the specificity and sensitivity of CPRINS (3). Previously, CPRINS-FISH did clarify the movement of DNA of a specific gene among Escherichia coli cells at the single-cell level (4).Enterobacterial phages P1 and T4 infect E. coli and have been well studied. P1 can exist as circular DNA within the bacterial cell as if it were a plasmid. Phage T4 is capable of undergoing only a lytic life cycle and not the lysogenic life cycle. Conventional methods using plaque assays have shown that the host of P1 and T4 is E. coli, but orthologous phage genes have been found in bacteria other than E. coli (6, 8). In the present study, strains of Enterobacteriaceae were allowed to grow on agar medium after the phage was adsorbed, and the maintenance of the transferred phage gene in the bacterial genomes was examined at the community level by quantitative real-time PCR and at the single-cell level by CPRINS-FISH.The following bacterial strains were used for maintenance experiments: Citrobacter freundii IFO 12681, Enterobacter aerogenes BM 2688, E. coli NBRC 12713, a Proteus mirabilis clinical isolate, Salmonella enterica serovar Enteritidis IID 640, and Yersinia enterocolitica IID 981. The bacterial strains were grown in Luria-Bertani (LB) medium (1% tryptone, 0.5% yeast extract, 0.5% NaCl; Nacalai Tesque Inc., Kyoto, Japan) at 37°C overnight.Stationary-phase cultures of 500 μl were incubated with 500 μl of SM buffer (50 mmol liter−1 Tris-HCl [pH 7.5], 100 mmol liter−1 NaCl, 8 mmol liter−1 MgSO4, 0.01% gelatin) containing the phage P1kc NBRC 20008 (2) or T4GT7 (11) at 37°C for 10 min at a multiplicity of infection of 1:1 (ratio of PFU of the phage to CFU of the recipient bacterium). The concentration of bacterial cells was adjusted to 109 cells ml−1. After 10 min of incubation, the diluted cell suspension (105 cells) was filtered through a polycarbonate filter (Advantec, Tokyo, Japan) with a pore size of 0.2 μm and a diameter of 25 mm. Cells trapped on the filter were cultured on LB agar medium at 37°C for 24 h. The filter was transferred into a microtube, and cells on the filter were suspended in 1 ml of sterile deionized water. The numbers of cells in the suspension and cells remaining on the filter were determined by using an epifluorescence microscope (see below) after staining of the samples with 1 μg ml−1 of 4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich Japan, Tokyo). The level of recovery of cells from the filter into sterile deionized water was about 99%. The cultured cells were subjected to real-time PCR and CPRINS-FISH.For real-time PCR, bacterial DNA was extracted using a QIAamp DNA isolation kit (Qiagen, Tokyo, Japan). The cell suspension was mixed with 10 mg ml−1 of lysozyme solution and incubated at 37°C for 1 h. DNA extraction was then performed according to the kit manufacturer''s instructions. Table Table11 lists the oligonucleotide primers for PCR and CPRINS and the polynucleotide probes used in the present study. Tail fiber genes from phages P1kc and T4GT7 were quantified by real-time PCR with a LightCycler system (Roche Diagnostics, Tokyo, Japan). LightCycler FastStart DNA master SYBR green I (Roche Diagnostics) was used with 5 mmol liter−1 Mg2+ and 0.5 μmol liter−1 (each) primers targeting the tail fiber genes of P1kc (P1-tail931f and P1-tail1148r) and T4GT7 (T4-tail2770f and T4-tail2983r). After a hot start for 10 min at 95°C, 40 cycles of PCR were run with denaturation at 94°C for 15 s, annealing at 60°C for 10 s, extension at 72°C for 10 s, and fluorescence detection at 83°C for 5 s. The known amounts of PCR products from the phage DNA (101 to 107 copies per reaction) were used for the standard curves to quantify the target DNA. To confirm the specificity of the reaction after real-time PCR, the PCR mixture was collected in a glass capillary and subjected to agarose gel electrophoresis in addition to a melting-curve analysis with the LightCycler system. The maintenance frequencies determined by real-time PCR were recorded as the copy number of the phage tail fiber gene per bacterial genome detected by staining with PicoGreen (Invitrogen, Tokyo, Japan) after cultivation of cells on LB agar medium for 24 h as described above. The frequencies were determined in triplicate for each sample. The increase in the phage gene copy number was determined by comparing the copy numbers in cells on the filter before and after cultivation. The phage gene copy number in cells on the filter was determined by the following formula: (total number of cells determined by DAPI staining) × (phage tail fiber gene copy number determined by real-time PCR)/(bacterial genome copy number determined by PicoGreen staining).

TABLE 1.

Probes and primers designed in this study
NameTargetTypeNucleotide sequence (5′-3′)
P1-tail931fTail fiber gene of phage P1PrimerAACGACCCGAATTACAGCAC
P1-tail1148rTail fiber gene of phage P1PrimerAGTGCTGCTGCAAGCTCATA
T4-tail2770fTail fiber gene of phage T4PrimerAGCACAAATGGTGAGCACAG
T4-tail2983rTail fiber gene of phage T4PrimerTTGCTACCGTGTGGGTATGA
T4-tail2664Tail fiber gene of phage T4ProbeGGCTTCAAGTACTGACTTAGGTACTAAAACCACATCAAGCTTTGACTATGGTACG
T4-tail2720Tail fiber gene of phage T4ProbeAAGGGAACTAACAGTACGGGTGGACACACTCACTCTGGTAGTGGTTCTA
T4-tail2769Tail fiber gene of phage T4ProbeTAGCACAAATGGTGAGCACAGCCACTACATCGAGGCATGGAATGG
T4-tail2818Tail fiber gene of phage T4ProbeGGTGTAGGTGGTAATAAGATGTCATCATATGCCATATCATACAGGGCGGG
T4-tail2869Tail fiber gene of phage T4ProbeGGGAGTAACACTAATGCAGCAGGGAACCACAGTCACACTTTCTCTTTTGGG
T4-tail2922Tail fiber gene of phage T4ProbeTAGCAGTGCTGGCGACCATTCCCACTCTGTAGGTATTGGTGCTCATA
Open in a separate windowCPRINS-FISH targeting the tail fiber gene of phage T4GT7 was performed as described by Kenzaka et al. (3, 4), except for the probe/primer sequences and thermal conditions. After cell wall permeabilization by lysozyme treatment (3), the CPRINS reaction was performed under the following conditions: a hot start at 95°C for 9 min, denaturation at 94°C for 1 min, annealing at 60°C for 30 s, and extension at 72°C for 1.5 min for primer T4-tail2983r. Amplification was repeated for 30 cycles by using a thermal cycler (PTC-200; Bio-Rad Laboratories, Inc.). After amplification, filters were rinsed with 0.1% Nonidet P-40 and sterile deionized water, dehydrated in 99% ethanol, and vacuum dried. Hybridization with Alexa Fluor 546-labeled polynucleotide probes (T4-tail2664, T4-tail2720, T4-tail2769, T4-tail2818, T4-tail2869, and T4-tail2922), washing, and DAPI staining were performed as described in a previous study (4). In order to exclude the possibility of nonspecific probe binding to cell structures other than the target DNA in the target cells, FISH using laboratory strains without amplification of target DNA and CPRINS-FISH targeting the tail fiber genes in E. coli strains that did not carry the genes were performed.In order to examine the infection ranges of phages, plaque assays and direct counting of phages were performed. Plaque assays were performed with LB soft agar (0.8% agar) as described by Kenzaka et al. (4). For the direct counting, phages were stained with 5× SYBR gold (Invitrogen, Tokyo, Japan) and trapped onto an Anodisc filter (Whatman Japan, Tokyo) with a pore size of 0.02 μm and a diameter of 25 mm.The cells or phage particles on the filters were observed under an epifluorescence microscope (E-400; Nikon, Tokyo, Japan) with the Nikon filter sets UV-2A (EX300-350, DM400, and BA420) for DAPI, B-2A (EX450-490, DM505, and BA520) for SYBR gold, and HQ-CY3 (G535/50, FT565, and BP610/75) for Alexa Fluor 546. Images were acquired using a Retiga 2000R cooled charge-coupled device camera (QImaging, Surrey, BC, Canada), and at least 2,000 DAPI- or SYBR gold-stained objects per sample were counted. The maintenance frequencies determined by CPRINS-FISH were recorded as the number of CPRINS-FISH-positive cells divided by the total direct count of recipient cells after cultivation as described above. The frequencies were determined in triplicate for each sample.After cultivation on LB agar medium for 24 h, the total number of cells on the filter as determined by DAPI staining increased by 8.7 × 102- to 1.1 × 104-fold (Table (Table2).2). Real-time PCR showed that the phage P1kc gene copy number increased only in plaque-forming strains (E. coli and E. aerogenes) and not in non-plaque-forming strains (Table (Table2).2). In contrast, the phage T4GT7 gene copy number increased in both plaque-forming and non-plaque-forming strains by 7.6 × 101- to 7.0 × 104-fold. The maintenance frequencies were more than 10−2 gene copies per bacterial genome (Table (Table2).2). Direct observation via epifluorescence microscopy showed that progeny phages were not produced in the non-plaque-forming strains (Table (Table2),2), and thus, fragments of phage genes were thought to integrate into the genomes of non-plaque-forming strains and replicate with the bacterial genomes.

TABLE 2.

Frequencies of maintenance of phage P1kc and T4GT7 genes in Enterobacteriaceae strains
PhageRecipientResult for infection range indicator:
Increase in total no. of cellscIncrease in phage gene copy no. (SD)dMaintenance frequency (SD) as determined bye:
Plaque formationaProduction of progenybReal-time PCRCPRINS-FISH
P1kcC. freundii7.0 × 103None<1.5 × 10−3ND
E. aerogenes++1.7 × 1037.7 × 103 (6.5 × 103)5.0 × 100 (4.2 × 100)ND
E. coli++7.2 × 1035.5 × 103 (2.7 × 103)9.1 × 10−1 (0.5 × 10−1)ND
P. mirabilis7.4 × 103None<1.5 × 10−3ND
S. Enteritidis8.4 × 103None<1.7 × 10−4ND
Y. enterocolitica4.6 × 103None<1.8 × 10−4ND
T4GT7C. freundii1.5 × 1037.5 × 103 (4.0 × 103)8.3 × 10−1 (4.4 × 10−1)8.6 × 10−2 (3.4 × 10−2)
E. aerogenes++8.7 × 1021.2 × 103 (0.8 × 103)8.0 × 10−1 (5.0 × 10−1)4.0 × 10−1 (0.7 × 10−1)
E. coli++1.1 × 1047.0 × 104 (2.7 × 104)8.0 × 101 (3.0 × 10)2.1 × 10−1 (0.4 × 10−1)
P. mirabilis4.0 × 1035.8 × 103 (4.2 × 103)3.3 × 10−1 (2.4 × 10−1)3.4 × 10−2 (2.2 × 10−2)
S. Enteritidis1.0 × 1047.6 × 101 (5.0 × 101)1.0 × 10−2 (0.7 × 10−2)8.8 × 10−2 (2.0 × 10−2)
Y. enterocolitica3.6 × 1031.6 × 104 (0.4 × 104)6.1 × 10−1 (1.6 × 10−1)2.2 × 10−2 (2.9 × 10−2)
Open in a separate windowaPlaque formation on soft agar was tested.bThe production of progeny phage particles was observed via epifluorescence microscopy.cThe increase (n-fold) in the total number of cells during bacterial growth for 24 h was determined via epifluorescence microscopy.dThe increase (n-fold) in the copy number of the phage tail fiber gene during bacterial growth for 24 h was determined by real-time PCR. Values in parentheses indicate standard deviations of results for triplicate samples.eMaintenance frequencies were determined by real-time PCR and CPRINS-FISH analyses targeting the phage tail fiber gene and are shown as the phage tail fiber gene copy numbers per bacterial genome and the numbers of gene-positive cells divided by the total numbers of cells, respectively. Values in parentheses indicate standard deviations of results for triplicate samples. ND, not determined.Real-time PCR provided a copy number for the target phage gene in the whole population, but the location of the target phage gene and the frequency of cells carrying the target gene were unclear. In addition, bacterial genomic DNA, which was measured using PicoGreen, included phage DNA, and thus the frequencies measured by dividing by the amount of bacterial genomic DNA were probably less accurate than those measured as described below. In order to confirm that the phage gene was located inside bacterial cells and determine a more accurate maintenance frequency for total cells, CPRINS-FISH targeting the tail fiber gene of phage T4GT7 was performed. CPRINS-FISH visualized the target phage gene in individual cells under an epifluorescence microscope (Fig. (Fig.1).1). It showed that the frequencies of maintenance of the tail fiber gene, expressed as the number of gene-positive cells divided by the total number of cells, were 2.1 × 10−1 to 4.0 × 10−1 for plaque-forming strains after growth on LB medium for 24 h (Table (Table2).2). Since phage T4GT7 is capable of undergoing only a lytic life cycle, CPRINS-FISH would detect cells in which the phage gene was replicating. For non-plaque-forming strains, the maintenance frequencies were 2.2 × 10−2 to 8.8 × 10−2 (Table (Table2).2). If the gene was amplified by the CPRINS reaction outside bacterial cells, the amplicon would not accumulate inside bacterial cells and they would not exhibit bright fluorescence. Therefore, CPRINS-FISH proved that a part of the phage T4GT7 gene was located inside cells of non-plaque-forming strains. The tail fiber gene is responsible for the phage tail structure. The DNA sequences of the phage genes responsible for phage morphology have been found in many bacterial genomes (1, 5).Open in a separate windowFIG. 1.Visualization of E. coli cells carrying the tail fiber gene transferred by phage T4GT7. (A) After being mixed with phages for 10 min, E. coli NBRC 12713 cells were cultured for 24 h and subjected to CPRINS-FISH targeting the phage gene. Only cells having amplified tail fiber gene products emitted the fluorescence of the Alexa Fluor 546-labeled probe under green excitation (exposure, 0.5 s). (B) All DAPI-stained bacterial cells were visualized under UV excitation (exposure time, 0.1 s).In order to explore the effect of integration of the phage gene into the bacterial genome on bacterial heredity, we determined the mutation frequency for a C. freundii strain that acquired the phage T4GT7 gene. Two colonies which acquired the phage T4GT7 gene were screened by colony PCR with T4-tail2770f and T4-tail2983r primers and designated Cik8-1 and Cik8-4. Mutation frequencies were determined with LB medium containing 150 μg ml−1of rifampin (rifampicin) or 10 μg ml−1of nalidixic acid. The mutation frequencies associated with nalidixic acid resistance decreased by 12- to 240-fold and the frequencies associated with rifampin resistance decreased by 40- to 83-fold compared to those for the parent strains (Fig. (Fig.2).2). Mutation increases genetic variation. The decreased mutation frequency would contribute to the genetic stability of the genome in individual cells but not to genetic variation in the population. Our results show that phage T4GT7 was capable of affecting the genomic properties of C. freundii, which was thought previously not to be the host, although the mechanism by which mutation frequencies decreased remains unknown. Further experiments are required to clarify the molecular mechanism by which mutation frequencies altered after gene transfer.Open in a separate windowFIG. 2.Mutation frequencies for T4GT7-infected C. freundii strains. Mutation frequencies were determined with LB agar medium containing nalidixic acid or rifampin. Cik8-1 and Cik8-4 were strains which acquired a phage gene transferred from phage T4GT7. Cik1 and Cik2 were the parent strains.In summary, during growth on agar medium after the phage was allowed to be adsorbed by strains of Enterobacteriaceae, the phage P1kc gene was not maintained in non-plaque-forming strains but the phage T4GT7 gene was maintained in more diverse species than previously expected. The transfer of foreign DNA molecules (DNA entry) into a bacterium is an important first step in genetic diversification through horizontal gene transfer. A previous study reported that phage P1kc is capable of injecting DNA into non-plaque-forming E. coli cells (4), but the phage P1kc gene was not maintained during bacterial growth in the present study. The results showing the difference in maintenance between phage P1kc and T4GT7 genes suggest that the maintenance of transferred phage genes depends on phage gene sequences or other phage factors. When maintained, the phage gene could alter the mutation frequency for bacteria that acquired the gene, affecting the genomic variability at the population level. Conventionally, phage-bacterium interaction has been studied with certain models consisting of a phage and a bacterium in which the phage can multiply (12, 13). Our results indicate the importance of the dynamic of phage genes among diverse bacteria that were previously thought not to be hosts and the hereditary impact of phage gene transfer on such bacteria.  相似文献   
996.
We present a Bayesian method for deriving species-sensitivity distributions (SSDs). We employed four Bayesian statistical models to consider differences in tolerance to toxic substances among different taxonomic groups. We first used a Malkov chain Monte Carlo simulation based on these models to estimate the SSD parameters. We then computed deviance information criterion values of the models and compared them in order to select the model with the best predictive ability. We applied this approach to seven substances (zinc, lead, hexavalent chromium, cadmium, nickel, short-chain chloride paraffin, and chloroform) as case examples, and then compared the derived SSDs from the selected models and a model that assumed no tolerance differences among taxonomic groups. We discuss the advantages and limitations of our approach on the basis of our results.  相似文献   
997.
Nascent peptide-dependent translation arrest is crucial for the quality control of eukaryotic gene expression. Here we show that the receptor for activated C kinase 1 (RACK1) participates in nascent peptide-dependent translation arrest, and that its binding to the 40S subunit is crucial for this. Translation arrest by a nascent peptide results in Dom34/Hbs1-independent endonucleolytic cleavage of mRNA, and this is stimulated by RACK1. We propose that RACK1 stimulates the translation arrest that is induced by basic amino-acid sequences that leads to endonucleolytic cleavage of the mRNA, as well as to co-translational protein degradation.  相似文献   
998.
The convergent synthesis of fluorescence-labeled solamin, an antitumor Annonaceous acetogenin, was accomplished by two asymmetric alkynylations of 2,5-diformyl tetrahydrofuran with an alkyne tagged with fluorescent groups and another alkyne with an α,β-unsaturated γ-lactone. Assay for the growth inhibitory activity against human cancer cell lines revealed that the probe with the fluorescent groups at the end of the hydrocarbon chain may have the same mode of action as natural acetogenins. The merged fluorescence of dansyl-labeled solamin and MitoTracker Red suggests that Annonaceous acetogenins localize in the mitochondria.  相似文献   
999.
Selective adsorption and separation of β-glucosidase, endo-acting endo-β-(1→4)-glucanase I (EG I), and exo-acting cellobiohydrolase I (CBH I) were achieved by affinity chromatography with β-lactosylamidine as ligand. A crude cellulase preparation from Hypocrea jecorina served as the source of enzyme. When crude cellulase was applied to the lactosylamidine-based affinity column, β-glucosidase appeared in the unbound fraction. By contrast, EG I and CBH I were retained on the column and then separated from each other by appropriately adjusting the elution conditions. The relative affinities of the enzymes, based on their column elution conditions, were strongly dependent on the ligand. The highly purified EG I and CBH I, obtained by affinity chromatography, were further purified by Mono P and DEAE chromatography, respectively. EG I and CBH I cleave only at the phenolic bond in p-nitrophenyl glycosides with lactose and N-acetyllactosamine (LacNAc). By contrast, both scissile bonds in p-nitrophenyl glycosides with cellobiose were subject to hydrolysis although with important differences in their kinetic parameters.  相似文献   
1000.
Schwartz JK  Liu XS  Tosha T  Diebold A  Theil EC  Solomon EI 《Biochemistry》2010,49(49):10516-10525
DNA protection during starvation (Dps) proteins are miniferritins found in bacteria and archaea that provide protection from uncontrolled Fe(II)/O radical chemistry; thus the catalytic sites are targets for antibiotics against pathogens, such as anthrax. Ferritin protein cages synthesize ferric oxymineral from Fe(II) and O(2)/H(2)O(2), which accumulates in the large central cavity; for Dps, H(2)O(2) is the more common Fe(II) oxidant contrasting with eukaryotic maxiferritins that often prefer dioxygen. To better understand the differences in the catalytic sites of maxi- versus miniferritins, we used a combination of NIR circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) to study Fe(II) binding to the catalytic sites of the two Bacillus anthracis miniferritins: one in which two Fe(II) react with O(2) exclusively (Dps1) and a second in which both O(2) or H(2)O(2) can react with two Fe(II) (Dps2). Both result in the formation of iron oxybiomineral. The data show a single 5- or 6-coordinate Fe(II) in the absence of oxidant; Fe(II) binding to Dps2 is 30× more stable than Dps1; and the lower limit of K(D) for binding a second Fe(II), in the absence of oxidant, is 2-3 orders of magnitude weaker than for the binding of the single Fe(II). The data fit an equilibrium model where binding of oxidant facilitates formation of the catalytic site, in sharp contrast to eukaryotic M-ferritins where the binuclear Fe(II) centers are preformed before binding of O(2). The two different binding sequences illustrate the mechanistic range possible for catalytic sites of the family of ferritins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号