首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1943篇
  免费   139篇
  国内免费   1篇
  2021年   17篇
  2020年   8篇
  2019年   13篇
  2018年   19篇
  2017年   15篇
  2016年   30篇
  2015年   44篇
  2014年   52篇
  2013年   145篇
  2012年   93篇
  2011年   109篇
  2010年   67篇
  2009年   67篇
  2008年   109篇
  2007年   118篇
  2006年   101篇
  2005年   96篇
  2004年   118篇
  2003年   106篇
  2002年   87篇
  2001年   50篇
  2000年   38篇
  1999年   35篇
  1998年   30篇
  1997年   20篇
  1996年   12篇
  1995年   14篇
  1994年   16篇
  1993年   19篇
  1992年   41篇
  1991年   36篇
  1990年   33篇
  1989年   30篇
  1988年   31篇
  1987年   18篇
  1986年   15篇
  1985年   18篇
  1984年   18篇
  1983年   18篇
  1982年   13篇
  1981年   11篇
  1980年   19篇
  1979年   9篇
  1978年   13篇
  1975年   14篇
  1972年   11篇
  1970年   7篇
  1969年   8篇
  1968年   9篇
  1966年   9篇
排序方式: 共有2083条查询结果,搜索用时 15 毫秒
161.
Putative functions of nucleoside diphosphate kinase in plants and fungi   总被引:4,自引:0,他引:4  
The putative functions of NDP (nucleoside diaphosphate) kinases from various organisms focusing to fungi and plants are described. The biochemical reactions catalyzed by NDP kinase are as follows. (i) Phosphotransferring activity from mainly ATP to cognate NDPs generating nucleoside triphosphates (NTPs). (ii) Autophosphorylation activity from ATP and GTP. (iii) Protein kinase (phosphotransferring) activity phosphorylating such as myelin basic protein. NDP kinase could function to provide NTPs as a housekeeping enzyme. However, recent works proved possible functions of the NDP kinases in the processes of signal transduction in various organisms, as described below. By use of the extracts of the mycelia of a filamentous fungus Neurospora crassa blue-light irradiation could increase the phosphorylation of a 15-kDa protein, which was purified and identified to be NDP kinase (NDK-1). By use of the etiolated seedlings of Pisum sativum cv Alaska and Oryza sativa red-light irradiation of intact plants increased the phosphorylation of NDP kinase. However, successive irradiation by red–far-red reversed the reaction, indicating that phytochrome-mediated light signals are transduced to the phosphorylation of NDP kinase. NDP kinase localizing in mitochondria is encoded by nuclear genome and different from those localized in cytoplasm. NDP kinase in mitochondria formed a complex with succinyl CoA synthetase. In Spinicia oleraceae two different NDP kinases were detected in the chloroplast, and in Pisum sativum two forms of NDP kinase originated from single species of mRNA could be detected in the choloroplast. However, the function of NDP kinases in the choloroplast is not yet known. In Neurospora crassa a Pro72His mutation in NDP kinase (ndk-1 Pro72His ) deficient in the autophosphorylation and protein kinase activity resulted in lacking the light-induced polarity of perithecia. In wild-type directional light irradiation parallel to the solid medium resulted in the formation of the perithecial beak at the top of perithecia, which was designated as light-induced polarity of perithecia. In wild-type in darkness the beak was formed at random places on perithecia, and in ndk Pro72His mutant the perithecial beak was formed at random places even under directional light illumination. The introduction of genomic DNA and cDNA for ndk-1 demonstrated that the wild-type DNAs suppressed the mutant phenotype. With all these results except for the demonstration in Neurospora, most of the phenomena are elusive and should be solved in the molecular levels concerning with NDP kinases.  相似文献   
162.
Mitochondrial ATP synthase (F1F0-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In this study, we overexpressed and purified human and bovine ATPase inhibitors and their properties were compared with those of a yeast inhibitor. The human and bovine inhibitors inhibited bovine ATPase in a similar way. The yeast inhibitor also inhibited bovine F1F0-ATPase, although the activity was about three times lower than the mammalian inhibitors. All three inhibitors inhibited yeast F1F0-ATPase in a similar way. The activities of all inhibitors decreased at higher pH, but the magnitude of the decrease was different for each combination of inhibitor and ATPase. The results obtained in this study show that the inhibitory mechanism of the inhibitors was basically shared in yeast and mammals, but that mammalian inhibitors require unique residues, which are lacking in the yeast inhibitor, for their maximum inhibitory activity. Common inhibitory sites of mammalian and yeast inhibitors are suggested.  相似文献   
163.
164.
Deranged oxidative metabolism is a property of many tumour cells. Oxidation of the deoxynucleotide triphosphate (dNTP) pool, as well as DNA, is a major cause of genome instability. Here, we report that two Y-family DNA polymerases of the archaeon Sulfolobus solfataricus strains P1 and P2 incorporate oxidized dNTPs into nascent DNA in an erroneous manner: the polymerases exclusively incorporate 8-OH-dGTP opposite adenine in the template, and incorporate 2-OH-dATP opposite guanine more efficiently than opposite thymine. The rate of extension of the nascent DNA chain following on from these incorporated analogues is only slightly reduced. These DNA polymerases have been shown to bypass a variety of DNA lesions. Thus, our results suggest that the Y-family DNA polymerases promote mutagenesis through the erroneous incorporation of oxidized dNTPs during DNA synthesis, in addition to facilitating translesion DNA synthesis. We also report that human DNA polymerase η, a human Y-family DNA polymerase, incorporates the oxidized dNTPs in a similar erroneous manner.  相似文献   
165.
Ischemia limits the delivery of oxygen and glucose to cells and disturbs the maintenance of mitochondrial membrane potential (MMP). MMP regulates the production of high-energy phosphate and apoptotic cascading. Thus, MMP is an important parameter determining the fate of neurons. Differences in the time course of MMP according to the grading of the ischemic impact have not been clarified. MMP and intracellular ATP contents were monitored before and after short-term oxygen-glucose deprivation. A primary hippocampal culture seeded in a 35 mm fenestrated dish for fluorescence microscopy was mounted in a sealed chamber for an anaerobic incubation. A continuous flow of 100% nitrogen into the chamber and a replacement of glucose-free medium allowed the condition of oxygen-glucose deprivation (OGD), thereby extrapolating ischemia. MMP was evaluated by the fluorescence of a voltage-dependent dye, JC-1, under fluorescence microscopy. The intracellular ATP content was evaluated in a hippocampal culture seeded in a 96-well plate by the luciferin-luciferase reaction after a designated period of OGD. During OGD, MMP decreased to 0.72+/-0.03 (normalized JC-1 fluorescence), then increased to the hyperpolarized level 1.99+/-0.12 during 60 min reoxygenation after 30 min OGD. MMP after 60 min OGD decreased and recovered occasionally during reoxygenation. After 90 min OGD and reoxygenation, MMP was reduced and never recovered. The intracellular ATP content was 8.1+/-6.6 and 3.2+/-1.9% after 30 min OGD and 30 min reoxygenation following 30 min OGD, respectively; 60 min OGD did not significantly change these levels (7.1+/-5.8, 2.6+/-0.5%). Hyperpolarization after OGD did not accompany ATP production. This observation suggests the inhibition of electron reentry into an inner membrane during reoxygenation and the disturbance of FoF1-ATP synthase. This pathological finding of an energy-producing system after OGD may provide a clue to explain post-ischemic energy failure.  相似文献   
166.
The replication fork barrier site (RFB) is an approximately 100-bp DNA sequence located near the 3' end of the rRNA genes in the yeast Saccharomyces cerevisiae. The gene FOB1 is required for this RFB activity. FOB1 is also necessary for recombination in the ribosomal DNA (rDNA), including increase and decrease of rDNA repeat copy number, production of extrachromosomal rDNA circles, and possibly homogenization of the repeats. Despite the central role that Foblp plays in both replication fork blocking and rDNA recombination, the molecular mechanism by which Fob1p mediates these activities has not been determined. Here, I show by using chromatin immunoprecipitation, gel shift, footprinting, and atomic force microscopy assays that Fob1p directly binds to the RFB. Fob1p binds to two separated sequences in the RFB. A predicted zinc finger motif in Fob1p was shown to be essential for the RFB binding, replication fork blocking, and rDNA recombination activities. The RFB seems to wrap around Fob1p, and this wrapping structure may be important for function in the rDNA repeats.  相似文献   
167.
The carcinoembryonic antigen (CEA) family consists of a large group of evolutionarily and structurally divergent glycoproteins. The murine CEACAM9 and CEACAM11-related proteins as well as the pregnancy-specific glycoproteins (PSG) are secreted members of the CEA family which are differentially expressed in fetal trophoblast cell populations during placental development. PSG are essential for a successful pregnancy, possibly by protecting the semiallotypic fetus from the maternal immune system. In contrast, Ceacam10 mRNA, coding for a protein identical in structure with CEACAM11-related proteins, is expressed in the maternal decidua surrounding the implantation site of the conceptus only during early stages of gestation between day 6.5 and day 10.5 postcoitum. To determine its role during murine development, we inactivated Ceacam10. Ceacam10(-/-) mice developed, like the previously established Ceacam9(-/-) mice, indistinguishably from wild-type littermates with respect to sex ratio, weight gain, and fertility. However, a small but significant reduction of the litter size by 23% was observed in Ceacam10(-/-) matings. Furthermore, combining the Ceacam9 and Ceacam10 null alleles, both located on chromosome 7, by meiotic recombination and subsequent mating of heterozygotes carrying both knockout alleles on one chromosome yielded wild-type and double knockout offspring at the expected Mendelian ratio. Taken together, both Ceacam10 and Ceacam9, alone or in combination, are not essential for either murine placental and embryonic development or for adult life.  相似文献   
168.
AIM: The roles of adrenomedullin (AM) in body fluid balance under general anesthesia were investigated. METHODS: Time course changes in plasma osmolality, AM, arginine vasopressin (AVP), and urinary aquaporin 2 (AQP2) in 17 patients undergoing abdominal surgery under general anesthesia were examined. RESULTS: Increases in plasma AM levels were observed in parallel with increases in the levels of urinary AQP2/creatinine (Cr) before induction and 90 and 180 min after initiation of anesthesia. Significant correlations between plasma AM and urinary AQP2/Cr (r = 0.62, p < 0.0001) as well as urinary AVP/Cr and AQP2/Cr (r = 0.60, p < 0.0001) were uncovered. Multivariate stepwise analysis identified plasma AM as the critical independent factor affecting urinary AQP2/Cr level. CONCLUSION: A novel correlation of AM and AQP2 which overlays an AVP-AQP2 system may play a key role in fluid homeostasis during general anesthesia.  相似文献   
169.
Several species of microalgae (phytoplankton), 4 species of freshwater algae and 4 species of marine diatoms, were cultured germ-free in the laboratory. The presence of free D-amino acids was verified in these species by a reversed-phase HPLC analysis. D-Aspartate was detected in all the microalgae examined, but D-alanine was only present in the marine diatoms. The D-amino acid content in Asterionella sp. of the marine diatoms increased from the exponential phase to the stationary phase and then decreased to the phase of decline.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号