首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1496篇
  免费   90篇
  2022年   8篇
  2021年   12篇
  2018年   13篇
  2017年   17篇
  2016年   18篇
  2015年   41篇
  2014年   39篇
  2013年   114篇
  2012年   59篇
  2011年   83篇
  2010年   52篇
  2009年   51篇
  2008年   91篇
  2007年   95篇
  2006年   74篇
  2005年   83篇
  2004年   94篇
  2003年   88篇
  2002年   80篇
  2001年   30篇
  2000年   33篇
  1999年   23篇
  1998年   20篇
  1997年   12篇
  1996年   12篇
  1995年   13篇
  1994年   8篇
  1993年   12篇
  1992年   18篇
  1991年   16篇
  1990年   13篇
  1989年   14篇
  1988年   19篇
  1987年   13篇
  1986年   16篇
  1985年   8篇
  1984年   16篇
  1983年   12篇
  1982年   17篇
  1981年   17篇
  1980年   16篇
  1979年   12篇
  1978年   11篇
  1976年   11篇
  1975年   10篇
  1974年   7篇
  1973年   7篇
  1972年   7篇
  1970年   6篇
  1965年   7篇
排序方式: 共有1586条查询结果,搜索用时 15 毫秒
61.
Acute inflammation is a prominent feature of central nervous system (CNS) insult and is detrimental to the CNS tissue. Although this reaction spontaneously diminishes within a short period of time, the mechanism underlying this inflammatory resolution remains largely unknown. In this study, we demonstrated that an initial infiltration of Ly6C+Ly6G? immature monocyte fraction exhibited the same characteristics as myeloid‐derived suppressor cells (MDSCs), and played a critical role in the resolution of acute inflammation and in the subsequent tissue repair by using mice spinal cord injury (SCI) model. Complete depletion of Ly6C+Ly6G? fraction prior to injury by anti‐Gr‐1 antibody (clone: RB6‐8C5) treatment significantly exacerbated tissue edema, vessel permeability, and hemorrhage, causing impaired neurological outcomes. Functional recovery was barely impaired when infiltration was allowed for the initial 24 h after injury, suggesting that MDSC infiltration at an early phase is critical to improve the neurological outcome. Moreover, intraspinal transplantation of ex vivo‐generated MDSCs at sites of SCI significantly reduced inflammation and promoted tissue regeneration, resulting in better functional recovery. Our findings reveal the crucial role of an Ly6C+Ly6G? fraction as MDSCs in regulating inflammation and tissue repair after SCI, and also suggests an MDSC‐based strategy that can be applied to acute inflammatory diseases.  相似文献   
62.
An association between FCGR3A-158 V/F polymorphism and biological responses to infliximab has been reported in Crohn’s disease (CD) in Western countries. However, little is known about the mechanism by which gene polymorphism affects the responses to infliximab. The aims of this study were to confirm the association in Japanese CD patients and to reveal the effect of gene polymorphism on biological responses to infliximab. Japanese CD patients were examined retrospectively at weeks 8 and 30. Clinical and biological responses were assessed by the Crohn’s disease activity index and C-reactive protein levels, respectively. The infliximab-binding affinity of natural killer (NK) cells from FCGR3A-158 V/V, V/F and F/F donors was examined. Infliximab-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) activities were also determined using transmembrane TNF-α-expressing Jurkat T cells as target cells and peripheral blood mononuclear cells (PBMCs) from V/V, V/F and F/F donors as effector cells. Biological responses at week 8 were statistically higher in V/V patients, whereas no significant differences were observed in either clinical responses at weeks 8 and 30 or biological responses at week 30 among the three genotypes. NK cells and PBMCs from V/V patients also showed higher infliximab-binding affinity and infliximab-mediated ADCC activity, respectively. Our results suggest that FCGR3A-158 polymorphism is a predicting factor of biological responses to infliximab in the early phases. FCGR3A-158 polymorphism was also found to affect the infliximab-binding affinity of NK cells and infliximab-mediated ADCC activity in vitro, suggesting that an effect on ADCC activity influences biological responses to infliximab in CD patients.  相似文献   
63.
Some parasitic helminths are known to protect their hosts from allergic and autoimmune disorders. Here, we tested the effects of a gastrointestinal nematode, Heligmosomoides polygyrus (Hp), on streptozotocin (STZ)-induced type 1 diabetes (T1D) in mice. Hp infection significantly suppressed hyperglycemia induced by multiple low-dose administration of STZ, but did not affect hyperglycemia induced by single high-dose administration of STZ. In the multiple low dose model, Hp infection prevented a decrease in pancreatic islet size. The augmentation of TNF-α and IL-1β expression in the pancreas was abrogated by Hp infection. The genetic absence of IL-10 or STAT6 did not abrogate the anti-hyperglycemic effect of Hp. Hp has a suppressive effect on immune mechanism-mediated experimental T1D via Th2 polarization-independent mechanisms.  相似文献   
64.
Exercise enhances insulin sensitivity in skeletal muscle, but the underlying mechanism remains obscure. Recent data suggest that alternatively activated M2 macrophages enhance insulin sensitivity in insulin target organs such as adipose tissue and liver. Therefore, the aim of this study was to determine the role of anti-inflammatory M2 macrophages in exercise-induced enhancement of insulin sensitivity in skeletal muscle. C57BL6J mice underwent a single bout of treadmill running (20 m/min, 90 min). Twenty-four hours later, ex vivo insulin-stimulated 2-deoxy glucose uptake was found to be increased in plantaris muscle. This change was associated with increased number of CD163-expressing macrophages (i.e. M2-polarized macrophages) in skeletal muscle. Systemic depletion of macrophages by pretreatment of mice with clodronate-containing liposome abrogated both CD163-positive macrophage accumulation in skeletal muscle as well as the enhancement of insulin sensitivity after exercise, without affecting insulin-induced phosphorylation of Akt and AS160 or exercise-induced GLUT4 expression. These results suggest that accumulation of M2-polarized macrophages is involved in exercise-induced enhancement of insulin sensitivity in mouse skeletal muscle, independently of the phosphorylation of Akt and AS160 and expression of GLUT4.  相似文献   
65.
Advanced glycation end products (AGEs) are involved in bone quality deterioration in diabetes mellitus. We previously showed that AGE2 or AGE3 inhibited osteoblastic differentiation and mineralization of mouse stromal ST2 cells, and also induced apoptosis and decreased cell growth. Although quality management for synthesized proteins in endoplasmic reticulum (ER) is crucial for the maturation of osteoblasts, the effects of AGEs on ER stress in osteoblast lineage are unknown. We thus examined roles of ER stress in AGE2- or AGE3-induced suppression of osteoblastogenesis of ST2 cells. An ER stress inducer, thapsigargin (TG), induced osteoblastic differentiation of ST2 cells by increasing the levels of Osterix, type 1 collagen (Col1), alkaline phosphatase (ALP) and osteocalcin (OCN) mRNA. AGE2 or AGE3 suppressed the levels of ER stress sensors such as IRE1α, ATF6 and OASIS, while they increased the levels of PERK and its downstream molecules, ATF4. A reduction in PERK level by siRNA did not affect the AGEs-induced suppression of the levels of Osterix, Col1 and OCN mRNA. In conclusion, AGEs inhibited the osteoblastic differentiation of stromal cells by suppressing ER stress sensors and accumulating abnormal proteins in the cells. This process might accelerate AGEs-induced suppression of bone formation found in diabetes mellitus.  相似文献   
66.
Linoleic acid, and its hydroperoxides and secondary autoxidation products were orally administered to rats (400 mg/rat). Their effects on hepatic lipid metabolism were examined. Linoleic acid reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase. It decreased the CoASH level and caused the accumulation of long-chain acyl-CoA. Hydroperoxides changed the compositions of unsaturated fatty acids in the hepatic lipids and lowered the content of neutral lipids. Secondary products stimulated carnitine palmitoyltransferase and decreased the content of neutral lipids. They reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase, and the levels of CoASH and acetyl-CoA. Thus, the effect of secondary products was apparently different from those of linoleic acid and its hydroperoxides.  相似文献   
67.
68.
This study examined the microbial transformation of carbazole (CZ) by an isolated bacterium that can use CZ as a sole carbon and nitrogen source. The strain identified as Pseudomonas stutzeri produced a large amount of anthranilic acid (AA) from CZ in the medium containing a nonionic surfactant. In dialysis culture using ion-exchange resin, 7.9 g/liter (58mm) of AA was accumulated from 15g/liter (90mm) of CZ and the molar yield of AA reached about 64%.  相似文献   
69.
The dissociation of wheat glutenin into subunits was observed by treatment with a small amount of mercuric chloride under moderate conditions, suggesting that the cleavage of inter-polypeptide chain disulfide bonds in the glutenin might occur. The dissociation into the subunits was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The electrophoretic patterns of the glutenin treated with mercuric chloride were essentially similar to those of the glutenin treated with 2-mercaptoethanol. Silver nitrate also had the same effects as mercuric chloride, and p-chloromercuribenzoate and N-ethylmaleimide showed no effect on the dissociation of the glutenin. Complete dissociation was achieved when the glutenin solution containing 0.5% SDS and 0.01 m phosphate buffer (pH 7.0) was incubated with 10?3 m mercuric chloride (about four moles per mole of disulfide groups) at 30°C for 20 hr. Partial dissociation was also observed after 30 min incubation. Increasing temperature and SDS concentration promoted the rate of the dissociation of the glutenin by mercuric chloride.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号