首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1466篇
  免费   79篇
  2023年   3篇
  2022年   4篇
  2021年   12篇
  2020年   9篇
  2019年   19篇
  2018年   17篇
  2017年   25篇
  2016年   28篇
  2015年   43篇
  2014年   61篇
  2013年   78篇
  2012年   80篇
  2011年   104篇
  2010年   72篇
  2009年   56篇
  2008年   88篇
  2007年   100篇
  2006年   94篇
  2005年   76篇
  2004年   104篇
  2003年   103篇
  2002年   98篇
  2001年   15篇
  2000年   9篇
  1999年   27篇
  1998年   26篇
  1997年   14篇
  1996年   18篇
  1995年   9篇
  1994年   17篇
  1993年   11篇
  1992年   17篇
  1991年   17篇
  1990年   11篇
  1989年   14篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   6篇
  1984年   9篇
  1983年   3篇
  1982年   9篇
  1981年   5篇
  1980年   4篇
  1978年   5篇
  1977年   3篇
  1976年   6篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有1545条查询结果,搜索用时 15 毫秒
61.
We evaluated the effectiveness of line thinning, a new silvicultural technique, toward restoring diversity of Coleoptera in overstocked Cryptomeria japonica D. Don plantations in central Japan. We compared the abundance of some common Coleoptera families between line-thinned stands and adjacent unthinned stands in two plantations: low-elevation Sugi site (4 years since thinning) and high-elevation Kuchiotani site (6 years since thinning). Many bettle families comprising various functional groups such as plant feeders, wood borers, rotten wood feeders, root feeders, fungus feeders, dung feeders, and scavengers were more abundant in the line-thinned stands than in the unthinned stands. Furthermore, some important families were missing from the unthinned stands. There were strong positive relationships between Coleopteran abundance and understory vegetation. Our results suggest that line thinning may potentially increase biodiversity in overstocked C. japonica plantations by restoring important ecological processes such as food-web interactions (pollination, predation, herbivory, decomposition, parasitism, etc.), and habitat conditions.  相似文献   
62.
Like neurons and astrocytes, oligodendrocytes have a variety of neurotransmitter receptors and ion channels. However, except for facilitating the rapid conduction of action potentials by forming myelin and buffering extracellular K(+), little is known about the direct involvement of oligodendrocytes in neuronal activities. To investigate their physiological roles, we focused on oligodendrocytes in the alveus of the rat hippocampal CA1 region. These cells were found to respond to exogenously applied glutamate by depolarization through N-methyl-D-aspartate (NMDA) receptors and non-NMDA receptors. Electrical stimulation of the border between the alveus and stratum oriens evoked inward currents through several routes involving glutamate receptors and inward rectifier K(+) channels. Moreover, electrical stimulation resembling in vivo activity evoked long-lasting depolarization. To examine the modulatory effects of oligodendrocytes on neuronal activities, we performed dual, whole-cell recording on CA1 pyramidal neurons and oligodendrocytes. Direct depolarization of oligodendrocytes shortened the latencies of action potentials evoked by antidromic stimulation. These results indicate that oligodendrocytes increase the conduction velocity of action potentials by a mechanism additional to saltatory conduction, and that they have active roles in information processing in the brain.  相似文献   
63.
Salmonella typhimurium OppA is the periplasmic oligopeptide-binding protein. Backbone resonances of OppA(D419N) on its own were assigned for ∼90% of residues. Missing residues are localised around the ligand-binding site, suggesting conformational flexibility in the unliganded state.  相似文献   
64.
Two sequentially-expressed GATA factor genes, serpent (srp) and GATAe, are essential for development of the Drosophila endoderm. The earliest endodermal GATA gene, srp, has been thought to specify the endodermal fate, activating the second GATA gene GATAe, and the latter continues to be expressed in the endodermal midgut throughout life. Previously, we proposed that GATAe establishes and maintains the state of terminal differentiation of the midgut, since some functional genes in the midgut require GATAe activity for their expression. To obtain further evidence of the role of GATAe, we searched for additional genes that are expressed specifically in the midgut in late stages, and examined responses of a total of selected 15 genes to the depletion and overexpression of GATAe. Ten of the 15 genes failed to be expressed in the embryo deficient for GATAe activity, but, the other five genes did not require GATAe. Instead, srp is required for activating the five genes. These observations indicate that GATAe activates a major subset of genes in the midgut, and some other pathway(s) downstream of srp activates other genes.  相似文献   
65.
66.
The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1? radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA? formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430?nm during the S-state cycle.  相似文献   
67.
Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions. However, structural differences of their aggregates remain to be fully characterized. In this study, we found that human and mouse a-syn aggregated in vitro formed morphologically distinct amyloid fibrils exhibiting twisted and straight structures, respectively. Furthermore, we identified different protease-resistant core regions, long and short, in human and mouse a-syn aggregates. Interestingly, among the seven unconserved amino acids, only A53T substitution, one of the familial PD mutations, was responsible for structural conversion to the straight-type. Finally, we checked whether the structural differences are transmissible by seeding and found that human a-syn seeded with A53T aggregates formed straight-type fibrils with short protease-resistant cores. These results suggest that a-syn aggregates form sequence-dependent polymorphic fibrils upon spontaneous aggregation but become seed structure-dependent upon seeding.  相似文献   
68.
Seeds of Caesulia axillaris Roxb. displayed an absolute light requirement for germination throughout the period of dry storage at 28°C. The seeds were found to show a gradual increase in percent germination with storage time - reaching a maximum value between 8-14 months and then a sharp decline. Percent water uptake and photosensitivity were at maximum after a 5-day imbibition period in the dark in both seedlots studied. Seedlot I, which was only marginally responsive to far-red light, showed a nearly complete red-far-red reversal effect in contrast to seedlot II. The latter also displayed a considerable promotion of germination in far-red light. Interestingly, a noticeable degree of heterogeneity, besides the one observed in both seedlots with reference to red light, was found to exist in seedlot II for far-red light. Exogenous application of nitrate and ammonium, at the levels occurring in soil during seed germination/seedling emergence phase of the plant in nature, promoted a considerable proportion of high Ø-requiring seeds to germinate under irradiation conditions establishing low Ø-value. The probable ecological implication of this reponse has been discussed. Little correlation was found between the requirement for an exogenous supply of nitrate and the endogenous nitrate level in the seeds in their response to far-red light.  相似文献   
69.
A gene, mokA, encoding a protein with similarities to histidine kinase-response regulator hybrid sensor, was cloned from a Myxococcus xanthus genomic library. The predicted mokA gene product was found to contain three domains: an amino-terminal input domain, a central transmitter domain, and a carboxy-terminal receiver domain. mokA mutants placed under starvation conditions exhibited reduced sporulation. Mutation of mokA also caused marked growth retardation at high osmolarity. These results indicated that M. xanthus MokA is likely a transmembrane sensor that is required for development and osmotic tolerance. The putative function of MokA is similar to that of the hybrid histidine kinase, DokA, of the eukaryotic slime mold Dictyostelium discoideum.  相似文献   
70.
Endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) has a high level of transglycosylation activity. To determine which amino acids are involved in this activity, we employed deletion analysis, as well as random and site-directed mutagenesis. Using PCR random mutagenesis, 11 mutants with greatly decreased levels of enzyme activity were isolated. Six catalytically essential amino acids were identified by site-directed mutagenesis. Mutants E173G, E175Q, D206G, and D270N had markedly reduced hydrolysis activity, while mutants V109D, E173D, and E173Q lost all enzymatic activity, indicating that Val-109 and Glu-173 are important for the catalytic function. Moreover, we isolated a random mutation that abolished the transglycosylation activity without affecting the hydrolysis activity. The Trp-216 to Arg mutation was identified, by site-directed mutagenesis, as that responsible for the loss of transglycosylation activity. While other mutants of Trp-216 showed reduced activity, mutation to another positively charged residue (Lys) also abolished the transglycosylation activity. Sequence comparison with two other endo-beta-N-acetylglucosaminidases, that possess transglycosylation activity and that have been cloned recently, reveals a high degree of identity in the N-terminal regions of the three enzymes. These results indicate that the tryptophan residue at position 216 of Endo-A has a key role in the transglycosylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号