首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6922篇
  免费   338篇
  国内免费   5篇
  7265篇
  2023年   13篇
  2022年   50篇
  2021年   70篇
  2020年   56篇
  2019年   53篇
  2018年   81篇
  2017年   68篇
  2016年   158篇
  2015年   229篇
  2014年   236篇
  2013年   506篇
  2012年   449篇
  2011年   485篇
  2010年   293篇
  2009年   273篇
  2008年   469篇
  2007年   498篇
  2006年   451篇
  2005年   440篇
  2004年   505篇
  2003年   383篇
  2002年   398篇
  2001年   66篇
  2000年   56篇
  1999年   66篇
  1998年   96篇
  1997年   72篇
  1996年   69篇
  1995年   69篇
  1994年   59篇
  1993年   51篇
  1992年   42篇
  1991年   48篇
  1990年   38篇
  1989年   36篇
  1988年   40篇
  1987年   26篇
  1986年   24篇
  1985年   20篇
  1984年   23篇
  1983年   17篇
  1982年   20篇
  1981年   24篇
  1980年   29篇
  1979年   13篇
  1978年   11篇
  1977年   19篇
  1976年   11篇
  1975年   9篇
  1973年   10篇
排序方式: 共有7265条查询结果,搜索用时 10 毫秒
991.
Activation of pattern recognition receptors and proper regulation of downstream signaling are crucial for host innate immune response. Upon infection, the NF-κB and interferon regulatory factors (IRF) are often simultaneously activated to defeat invading pathogens. Mechanisms concerning differential activation of NF-κB and IRF are not well understood. Here we report that a MAVS variant inhibits interferon (IFN) induction, while enabling NF-κB activation. Employing herpesviral proteins that selectively activate NF-κB signaling, we discovered that a MAVS variant of ~50 kDa, thus designated MAVS50, was produced from internal translation initiation. MAVS50 preferentially interacts with TRAF2 and TRAF6, and activates NF-κB. By contrast, MAVS50 inhibits the IRF activation and suppresses IFN induction. Biochemical analysis showed that MAVS50, exposing a degenerate TRAF-binding motif within its N-terminus, effectively competed with full-length MAVS for recruiting TRAF2 and TRAF6. Ablation of the TRAF-binding motif of MAVS50 impaired its inhibitory effect on IRF activation and IFN induction. These results collectively identify a new means by which signaling events is differentially regulated via exposing key internally embedded interaction motifs, implying a more ubiquitous regulatory role of truncated proteins arose from internal translation and other related mechanisms.  相似文献   
992.
993.
Polyploid amphibians and fishes occur naturally in nature, while polyploid mammals do not. For example, tetraploid mouse embryos normally develop into blastocysts, but exhibit abnormalities and die soon after implantation. Thus, polyploidization is thought to be harmful during early mammalian development. However, the mechanisms through which polyploidization disrupts development are still poorly understood. In this study, we aimed to elucidate how genome duplication affects early mammalian development. To this end, we established tetraploid embryonic stem cells (TESCs) produced from the inner cell masses of tetraploid blastocysts using electrofusion of two-cell embryos in mice and studied the developmental potential of TESCs. We demonstrated that TESCs possessed essential pluripotency and differentiation potency to form teratomas, which differentiated into the three germ layers, including diploid embryonic stem cells. TESCs also contributed to the inner cell masses in aggregated chimeric blastocysts, despite the observation that tetraploid embryos fail in normal development soon after implantation in mice. In TESCs, stability after several passages, colony morphology, and alkaline phosphatase activity were similar to those of diploid ESCs. TESCs also exhibited sufficient expression and localization of pluripotent markers and retained the normal epigenetic status of relevant reprogramming factors. TESCs proliferated at a slower rate than ESCs, indicating that the difference in genomic dosage was responsible for the different growth rates. Thus, our findings suggested that mouse ESCs maintained intrinsic pluripotency and differentiation potential despite tetraploidization, providing insights into our understanding of developmental elimination in polyploid mammals.  相似文献   
994.

Background

Trypanosoma cruzi is a parasitic protist that causes Chagas disease, which is prevalent in Latin America. Because of the unavailability of an effective drug or vaccine, and because about 8 million people are infected with the parasite worldwide, the development of novel drugs demands urgent attention. T. cruzi infects a wide variety of mammalian nucleated cells, with a preference for myocardial cells. Non-dividing trypomastigotes in the bloodstream infect host cells where they are transformed into replication-capable amastigotes. The amastigotes revert to trypomastigotes (trypomastigogenesis) before being shed out of the host cells. Although trypomastigote transformation is an essential process for the parasite, the molecular mechanisms underlying this process have not yet been clarified, mainly because of the lack of an assay system to induce trypomastigogenesis in vitro.

Methodology/Principal Findings

Cultivation of amastigotes in a transformation medium composed of 80% RPMI-1640 and 20% Grace’s Insect Medium mediated their transformation into trypomastigotes. Grace’s Insect Medium alone also induced trypomastigogenesis. Furthermore, trypomastigogenesis was induced more efficiently in the presence of fetal bovine serum. Trypomastigotes derived from in vitro trypomastigogenesis were able to infect mammalian host cells as efficiently as tissue-culture-derived trypomastigotes (TCT) and expressed a marker protein for TCT. Using this assay system, we demonstrated that T. cruzi inositol 1,4,5-trisphosphate receptor (TcIP3R)—an intracellular Ca2+ channel and a key molecule involved in Ca2+ signaling in the parasite—is important for the transformation process.

Conclusion/Significance

Our findings provide a new tool to identify the molecular mechanisms of the amastigote-to-trypomastigote transformation, leading to a new strategy for drug development against Chagas disease.  相似文献   
995.
Reactive oxygen species (ROS) including hydrogen peroxide (H2O2) exhibit both pro-survival and pro-death signaling in leukemic cells. We examined the effect of exogenous H2O2 on Fas ligand (FasL) -induced apoptosis in Jurkat cells. H2O2 applied prior to (pre-conditioning) and during (post-conditioning) FasL stimulation attenuated early apoptosis through activation of EKR5. H2O2 increased the activated caspase-8 sequestered in the mitochondria thereby decreasing cell death through the extrinsic apoptotic pathway. In addition, inhibition of a protein tyrosine phosphatase likely explains the post-conditioning requirement for H2O2. Given that chemotherapeutic agents used for the treatment of acute lymphoblastic leukemia are thought to work partly through production of ROS, a simultaneous inhibition of the ERK5 pathway may abrogate the ROS-initiated pro-survival signaling for an enhanced cell kill.  相似文献   
996.
Cytokines play important roles in heart failure (HF). We examined whether cytokine levels are different in acute decompensated heart failure (ADHF) patients between with left ventricular systolic dysfunction (LVSDF) and with preserved LV ejection function (PLVEF). We studied 81 HF patients who were admitted to our hospital with acute decompensation. They were divided into two groups: LVSDF (LVEF) < 45% and PLVEF (LVEF ? 45%). Serum interleukin-6 (IL-6), highly sensitive C-reactive protein (hsCRP), tumor necrosis factor alpha (TNF-α), and IL-18 and plasma brain natriuretic peptide (BNP) were measured on admission and at discharge. On admission, IL-6 and hsCRP were higher in LVSDF than in PLVEF. IL-6 and hsCRP decreased after treatment in LVSDF, but not in PLVEF, while plasma BNP levels decreased in both HF with treatment. There was no difference in TNF-α or in IL-18 level between LVSDF and PLVEF, and they did not change after treatment in either group. In conclusion, cytokine profiles were different in ADHF between those with LVSDF and PLVEF. Activation of IL-6–hsCRP pathway may play a specific role in ADHF with LVSDF.  相似文献   
997.
998.
We analyzed the binding of the 7C8 antibody to the chloramphenicol phosphonate antigens—one containing a trifluoroacetyl group (CP‐F) and the other containing an acetyl group (CP‐H)—by using isothermal titration calorimetry (ITC). The thermodynamic difference due to the substitution of F by H was evaluated using free energy calculations based on molecular dynamics (MD) simulations. We have previously shown that another antibody, namely, 6D9, binds more weakly to CP‐H than to CP‐F, mainly due to the different hydration free energies of the dissociated state and not due to the unfavorable hydrophobic interactions with the antibody in the bound state. Unlike in the binding of the trifluoroacetyl group with 6D9, in its binding with 7C8, it is exposed to the solvent, as seen in the crystal structure of the complex of 7C8 with CP‐F. The thermodynamic analysis performed in this study showed that the binding affinity of 7C8 for CP‐H is similar to that for CP‐F, but this binding to CP‐H is accompanied with less favorable enthalpy and more favorable entropy changes. The free energy calculations indicated that, upon the substitution of F by H, enthalpy and entropy changes in the associated and dissociated states were decreased, but the magnitude of enthalpy and entropy changes in the dissociated state was larger than that in the associated state. The differences in binding free energy, enthalpy, and entropy changes determined by the free energy calculations for the substitution of F by H are in good agreement with the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
999.
1000.
Enterocin X, composed of two antibacterial peptides (Xα and Xβ), is a novel class IIb bacteriocin from Enterococcus faecium KU-B5. When combined, Xα and Xβ display variably enhanced or reduced antibacterial activity toward a panel of indicators compared to each peptide individually. In E. faecium strains that produce enterocins A and B, such as KU-B5, only one additional bacteriocin had previously been known.Bacteriocins are gene-encoded antibacterial peptides and proteins. Because of their natural ability to preserve food, they are of particular interest to researchers in the food industry. Bacteriocins are grouped into three main classes according to their physical properties and compositions (11, 12). Of these, class IIb bacteriocins are thermostable non-lanthionine-containing two-peptide bacteriocins whose full antibacterial activity requires the interaction of two complementary peptides (8, 19). Therefore, two-peptide bacteriocins are considered to function together as one antibacterial entity (14).Enterocins A and B, first discovered and identified about 12 years ago (2, 3), are frequently present in Enterococcus faecium strains from various sources (3, 5, 6, 9, 13, 16). So far, no other bacteriocins have been identified in these strains, except the enterocin P-like bacteriocin from E. faecium JCM 5804T (18). Here, we describe the characterization and genetic identification of enterocin X in E. faecium KU-B5. Enterocin X (identified after the enterocin P-like bacteriocin was discovered) is a newly found class IIb bacteriocin in E. faecium strains that produce enterocins A and B.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号