首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3171篇
  免费   240篇
  3411篇
  2022年   15篇
  2021年   33篇
  2020年   14篇
  2019年   14篇
  2018年   25篇
  2017年   23篇
  2016年   44篇
  2015年   68篇
  2014年   81篇
  2013年   129篇
  2012年   122篇
  2011年   140篇
  2010年   106篇
  2009年   108篇
  2008年   150篇
  2007年   151篇
  2006年   167篇
  2005年   162篇
  2004年   170篇
  2003年   176篇
  2002年   158篇
  2001年   134篇
  2000年   141篇
  1999年   112篇
  1998年   36篇
  1997年   34篇
  1996年   38篇
  1995年   39篇
  1994年   48篇
  1993年   31篇
  1992年   69篇
  1991年   65篇
  1990年   47篇
  1989年   48篇
  1988年   53篇
  1987年   44篇
  1986年   55篇
  1985年   38篇
  1984年   20篇
  1983年   31篇
  1982年   26篇
  1981年   15篇
  1980年   21篇
  1979年   26篇
  1978年   18篇
  1977年   18篇
  1975年   19篇
  1974年   12篇
  1971年   12篇
  1969年   20篇
排序方式: 共有3411条查询结果,搜索用时 15 毫秒
51.
The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform 13C and 15N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the β-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.  相似文献   
52.
53.
Perfused guinea-pig hearts, which were analyzed by 31P-MRS, were subjected to 30 and 60 minute ischemia and reperfused using two perfusates, one containing 200 microM inosine, and the other without inosine. After 4 hour reperfusion with inosine, ATP levels increased to 95.5% of preischemic value (30 minute ischemia) and 76.2% (60 minute ischemia). However, after 4 hour reperfusion without inosine, ATP levels increased only to 72.2% (30 minute ischemia) and to 48.2% (60 minute ischemia). In 60 minute ischemic hearts reperfused with inosine, left ventricular maximal positive dp/dt (LV dp/dt) was improved significantly to 82.4% after 6 hour reperfusion in contrast to hearts reperfused without inosine (43.1%). Administration of inosine was very useful for increasing myocardial gross energy product and improving cardiac performance.  相似文献   
54.
Following the descovery of its transposition activity in mammalian culture systems, the Sleeping Beauty (SB) transposon has since been applied to achieve germline mutagenesis in mice. Initially, the transposition efficiency was found to be low in cultured systems, but its activity in germ cells was unexpectedly high. This difference in transposition efficiency was found to be largely dependent on chromosomal status of the host genomic DNA and transposon vector design. The SB transposon system has been found to be suitable for comprehensive mutagenesis in mice. Therefore, it is an effective tool as a forward genetics screen for tagged insertional mutagenesis in mice.  相似文献   
55.
56.
57.
It is well recognized that the Shiga-like toxins (Stxs) preferentially bind to Gb3 glycolipids and the cholera toxin (CT) and heat-labile enterotoxin (LTp) bind to GM1 gangliosides. After binding to the cell surface, A-B bacterial enterotoxins have to be internalized by endocytosis. The transport of the toxin-glycolipid complex has been documented in several manners but the actual mechanisms are yet to be clarified. We applied a heterobifunctional cross-linker, sulfosuccinimidyl-2-(p-azidosalicylamido)-1,3'-dithiopropionate (SASD), to detect the membrane proteins involved in the binding and the transport of A-B bacterial enterotoxins in cultured cells. Both Stx1 and Stx2 bound to the detergent-insoluble microdomain (DIM) of Vero cells and Caco-2 cells, which were susceptible to the toxin, but neither was bound to insusceptible CHO-K1 cells. Both CT and LTp bound to the DIM of Vero cells, Caco-2 cells, and CHO-K1 cells. In a cross-linking experiment, Stx1 cross-linked only with a 27-kDa molecule, while Stx2, which was more potently toxic than Stx1, cross-linked with 27- and 40-kDa molecules of Vero cells as well as of Caco-2 cells; moreover, no molecules were cross-linked with the insusceptible CHO-K1 cells. LTp was cross-linked only to the 27-kDa molecule of these three cell types but the CT, which was more toxic than LTp, was also cross-linked with 27- and 40-kDa molecules of Vero cells, Caco-2 cells, and CHO-K1 cells. The 27- and the 40-kDa molecules might play a role in the endocytosis and retrograde transport of A-B bacterial enterotoxins.  相似文献   
58.
59.
Lipoproteins having a lipid-modified cysteine at the N-terminus are localized on either the inner or the outer membrane of Escherichia coli depending on the residue at position 2. Five Lol proteins involved in the sorting and membrane localization of lipoprotein are highly conserved in Gram-negative bacteria. We determined the crystal structures of a periplasmic chaperone, LolA, and an outer membrane lipoprotein receptor, LolB. Despite their dissimilar amino acid sequences, the structures of LolA and LolB are strikingly similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta barrel and an alpha-helical lid. The cavity represents a possible binding site for the lipid moiety of lipoproteins. Detailed structural differences between the two proteins provide significant insights into the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB and from LolB to the outer membrane. Furthermore, the structures of both LolA and LolB determined from different crystal forms revealed the distinct structural dynamics regarding the association and dissociation of lipoproteins. The results are discussed in the context of the current model for the lipoprotein transfer from the inner to the outer membrane through a hydrophilic environment.  相似文献   
60.
To improve the metabolic stability of 3, which exhibited both in vitro antitumor activity and in vivo efficacy by both iv and po administration, we designed and synthesized new taxane analogues. Most of the synthetic compounds maintained excellent antitumor activity and were scarcely metabolized by human liver microsomes. And some compounds exhibited potent antitumor effects against B16 melanoma BL6 in vivo by both iv and po administration similarly to 3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号