首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   39篇
  2022年   8篇
  2021年   13篇
  2020年   12篇
  2019年   7篇
  2018年   21篇
  2017年   18篇
  2016年   10篇
  2015年   32篇
  2014年   35篇
  2013年   71篇
  2012年   49篇
  2011年   54篇
  2010年   21篇
  2009年   18篇
  2008年   37篇
  2007年   43篇
  2006年   44篇
  2005年   34篇
  2004年   28篇
  2003年   19篇
  2002年   31篇
  2001年   7篇
  2000年   8篇
  1999年   15篇
  1998年   13篇
  1997年   6篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   5篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
排序方式: 共有709条查询结果,搜索用时 234 毫秒
111.
112.
113.
114.
We explored the possibilities of whole-genome duplication (WGD) in prokaryotic species,where we performed statistical analyses of the configurations of the central angles between homologous tandem repeats (TRs) on the circular chromosomes.At first,we detected TRs on their chromosomes and identified equivalent tandem repeat pairs (ETRPs); here,an ETRP is defined as a pair of tandem repeats sequentially similar to each other.Then we carried out statistical analyses of the central angle distributions of the de...  相似文献   
115.
116.
Transforming growth factor beta-activated kinase 1 (TAK1) functions downstream of inflammatory cytokines to activate c-Jun N-terminal kinase (JNK) as well as NF-kappaB in several cell types. However, the functional role of TAK1 in an in vivo setting has not been determined. Here we have demonstrated that TAK1 is the major regulator of skin inflammation as well as keratinocyte death in vivo. Epidermal-specific deletion of TAK1 causes a severe inflammatory skin condition by postnatal day 6-8. The mutant skin also exhibits massive keratinocyte death. Analysis of keratinocytes isolated from the mutant skin revealed that TAK1 deficiency results in a striking increase in apoptosis in response to tumor necrosis factor (TNF). TAK1-deficient keratinocytes cannot activate NF-kappaB or JNK upon TNF treatment. These results suggest that TNF induces TAK1-deficient keratinocyte death because of the lack of NF-kappaB (and possibly JNK)-mediated cell survival signaling. Finally, we have shown that deletion of the TNF receptor can largely rescue keratinocyte death as well as inflammatory skin condition in epidermal-specific TAK1-deficient mice. Our results demonstrate that TAK1 is a master regulator of TNF signaling in skin and regulates skin inflammation and keratinocyte death.  相似文献   
117.
We investigated the molecular mechanisms involved in the angiotensin‐converting enzyme (ACE) inhibition by (?)‐epigallocatechin‐3‐gallate (EGCg), a major tea catechin. EGCg inhibited both the ACE activity in the lysate of human colorectal cancer cells and human recombinant ACE (rh‐ACE) in a dose‐dependent manner. Co‐incubation with zinc sulfate showed no influence on the rh‐ACE inhibition by EGCg, whereas it completely counteracted the inhibitory effect of ethylenediaminetetraacetic acid, a chelating‐type ACE inhibitor. Although hydrogen peroxide was produced by the autoxidation of EGCg, hydrogen peroxide itself had little effect on the ACE activity. Conversely, the co‐incubation of EGCg with borate or ascorbic acid significantly diminished the EGCg inhibition. A redox‐cycling staining experiment revealed that rh‐ACE was covalently modified by EGCg. A Lineweaver–Burk plot analysis indicated that EGCg inhibited the ACE activity in a non‐competitive manner. These results suggested that EGCg might allosterically inhibit the ACE activity through oxidative conversion into an electrophilic quinone.  相似文献   
118.
The SPO11-generated DNA double-strand breaks (DSBs) that initiate meiotic recombination occur non-randomly across genomes, but mechanisms shaping their distribution and repair remain incompletely understood. Here, we expand on recent studies of nucleotide-resolution DSB maps in mouse spermatocytes. We find that trimethylation of histone H3 lysine 36 around DSB hotspots is highly correlated, both spatially and quantitatively, with trimethylation of H3 lysine 4, consistent with coordinated formation and action of both PRDM9-dependent histone modifications. In contrast, the DSB-responsive kinase ATM contributes independently of PRDM9 to controlling hotspot activity, and combined action of ATM and PRDM9 can explain nearly two-thirds of the variation in DSB frequency between hotspots. DSBs were modestly underrepresented in most repetitive sequences such as segmental duplications and transposons. Nonetheless, numerous DSBs form within repetitive sequences in each meiosis and some classes of repeats are preferentially targeted. Implications of these findings are discussed for evolution of PRDM9 and its role in hybrid strain sterility in mice. Finally, we document the relationship between mouse strain-specific DNA sequence variants within PRDM9 recognition motifs and attendant differences in recombination outcomes. Our results provide further insights into the complex web of factors that influence meiotic recombination patterns.  相似文献   
119.
Fluorescence cross-correlation spectroscopy (FCCS) reveals information about the spatiotemporal coincidence of two spectrally well-defined fluorescent molecules in a small observation area at the level of single-molecule sensitivity. To simultaneously evaluate the activities of caspase-3 and caspase-9, we constructed a chimeral protein that consisted of tandemly fused enhanced cyan fluorescent protein (ECFP), monomeric red fluorescent protein (mCherry) and monomeric yellow fluorescent protein (Venus). In HeLa cell lysates, a combination of tumor necrosis factor-α (TNF-α)- and cycloheximide (CHX-)-induced apoptosis was monitored. In this, decreases of cross-correlation amplitudes were observed between ECFP and mCherry and between mCherry and Venus. Moreover, time-dependent monitoring of single cells revealed decreases in the cross-correlation amplitudes between ECFP and mCherry and between mCherry and Venus before morphologic changes were observed by laser scanning fluorescence microscopy (LSM). Thus, our method could predict the fate of the cell in the early apoptotic stage.  相似文献   
120.
Previous studies have demonstrated that methyl jasmonate (MeJA) induces stomatal closure dependent on change of cytosolic free calcium concentration in guard cells. However, these molecular mechanisms of intracellular Ca(2+) signal perception remain unknown. Calcium-dependent protein kinases (CDPKs) function as Ca(2+) signal transducers in various plant physiological processes. It has been reported that four Arabidopsis (Arabidopsis thaliana) CDPKs, CPK3, CPK6, CPK4, and CPK11, are involved in abscisic acid signaling in guard cells. It is also known that there is an interaction between MeJA and abscisic acid signaling in guard cells. In this study, we examined the roles of these CDPKs in MeJA signaling in guard cells using Arabidopsis mutants disrupted in the CDPK genes. Disruption of the CPK6 gene impaired MeJA-induced stomatal closure, but disruption of the other CDPK genes did not. Despite the broad expression pattern of CPK6, we did not find other remarkable MeJA-insensitive phenotypes in the cpk6-1 mutant. The whole-cell patch-clamp analysis revealed that MeJA activation of nonselective Ca(2+)-permeable cation channels is impaired in the cpk6-1 mutant. Consistent with this result, MeJA-induced transient cytosolic free calcium concentration increments were reduced in the cpk6-1 mutant. MeJA failed to activate slow-type anion channels in the cpk6-1 guard cells. Production of early signal components, reactive oxygen species and nitric oxide, in guard cells was elicited by MeJA in the cpk6-1 mutant as in the wild type. These results provide genetic evidence that CPK6 has a different role from CPK3 and functions as a positive regulator of MeJA signaling in Arabidopsis guard cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号